ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:336KB ,
资源ID:416926      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-416926-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材2021-2022学年数学人教A版必修第一册教案:5-5三角恒等变换 5-5-1两角和与差的正弦、余弦和正切公式 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新教材2021-2022学年数学人教A版必修第一册教案:5-5三角恒等变换 5-5-1两角和与差的正弦、余弦和正切公式 WORD版含解析.doc

1、5.5.1 两角和与差的正弦、余弦和正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲.二、教学目标1.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦公式.2.会用两角和与差的正弦、余弦公式进行简单的三角函数的求值、化简、计算等.3.熟悉两角和与差的正、余弦公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.三、教学重点难点重点:两角和与差公式的应用;难点:两角和与差

2、公式变为一个角的三角函数的形式. 四、教学方法1温故、推新,循序渐进,以学生为主体逐步掌握本节知识要点.2新授课教学基本环节:预习检查、总结疑惑情境导入、展示目标合作探究、精讲点拨反思总结、当堂检测发导学案、布置预习.五、课前准备多媒体课件六、课时安排1课时七、教学过程填要点记疑点1.两角和与差的余弦公式:_.:_.2.两角和与差的正弦公式:_.:_.3.两角互余或互补(1)若_,其、为任意角,我们就称、互余.例如:与_互余,与_互余.(2)若,其、为任意角,我们就称、互补.例如:与_互补,_与互补.探要点究所然情境导学从两角差的余弦公式出发,你能推导出两角和与差的三角函数的其他公式吗?探究点

3、一由公式推导公式思考由于公式对于任意,都成立,那么把其中的换成后,也一定成立.请你根据这种联系,从两角差的余弦公式出发,推导出用任意角,的正弦、余弦值表示的公式?答:,.即.探究点二由公式推导公式及思考利用诱导公式五(或六)可以实现正弦和余弦的互化,根据这种联系,请你试着从差角的余弦公式出发,推导出用任意角,的正弦、余弦值表示及的公式?师生一起探讨完成探究点二两角和与差的正弦、余弦公式的应用思考运用两角和与差的正弦、余弦公式化简、求值要注意灵活进行三角函数名称以及角的变换,善于构造符合某一公式的特征结构后,再运用公式化简、求值.如果题目中存在互余角,要善于发现和利用.例如,化简:.解:原式=.

4、例1化简求值:(1);解:原式=.(2).解:原式.反思与感悟解答此类题一般先要用诱导公式把角化正化小,化切为弦统一函数名称,然后根据角的关系和式子的结构选择公式.跟踪训练1化简求值:(1);(2);(3).例2已知,且,求的值.解,.,.,.又,.反思与感悟此类题是给值求角题,步骤如下:(1)求所求角的某一个三角函数值;(2)确定所求角的范围,此类题常犯的错误是对角的范围不加讨论,范围讨论的程度过大或过小,会使求出的角不合题意或者漏解,同时要根据角的范围确定取该角的哪一种三角函数值.跟踪训练2已知,为第二象限角,为第三象限角.求和的值.例3已知,求证:.证明:.反思与感悟证明三角恒等式一般采

5、用“由繁到简”、“等价转化”、“往中间凑”等办法,注意等式两边角的差异、函数名称的差异、结构形式的差异.跟踪训练3证明:.当堂测查疑缺1.的值是( )A. B. C. D.2.在中,则等于( )A. B.C. D.3.函数的值域是_.4.已知锐角、满足,则_.呈重点、现规律1.公式与的联系、结构特征和符号规律四个公式、虽然形式不同、结构不同,但它们的本质是相同的,其内在联系为,这样我们只要牢固掌握“中心”公式的由来及表达方式,也就掌握了其他三个公式.对于公式与,可记为“同名相乘,符号反”.对于公式与,可记为“异名相乘,符号同”.2.使用和差公式时不仅要会正用,还要能够逆用公式,如化简时,不要将和展开,而应采用整体思想,作如下变形:.3.运用和差公式求值、化简、证明时要注意灵活进行三角变换,有效地沟通条件中的角与问题结论中的角之间的联系,选用恰当的公式快捷求解.八、布置作业

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3