ImageVerifierCode 换一换
格式:DOC , 页数:34 ,大小:3.31MB ,
资源ID:410857      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-410857-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(全程方略2015届高考数学专项精析精炼:2014年考点10 导数在研究函数中的应用与生活中的优化问题举例.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

全程方略2015届高考数学专项精析精炼:2014年考点10 导数在研究函数中的应用与生活中的优化问题举例.doc

1、温馨提示: 此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。 考点10 导数在研究函数中的应用与生活中的优化问题举例一、选择题1. (2014 湖南高考文科9)若,则( )A.B.C. D.【解题提示】构造新函数,利用函数的单调性求解。【解析】选C .选项具体分析结论A构造函数,根据的图象可知在(0,1)上不单调错误B同上错误C构造新函数,所以在(0,1)上是减函数,所以正确D同上错误2.(2014辽宁高考文科12)与(2014辽宁高考理科11)相同当时,不等式恒成立,则实数的取值范围是【解题提示】 采用分离常数法,利用导数求函数的最值,【解析

2、】选.当时,不等式恒成立令,则设 ,在上为增函数,所以,则上为增函数,的最大值;从而;当时,;当时,不等式恒成立,所以上为减函数,在上为增函数,故,则综上所述,3.(2014陕西高考文科T10)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接 (相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为()A.y=错误!未找到引用源。x3-错误!未找到引用源。x2-x B.y=错误!未找到引用源。x3+错误!未找到引用源。x2-3xC.y=错误!未找到引用源。x3-x D.y=错误!未找到引用源。x3+错误!未找到引用源。x2-2x【解题指南】根据已知图像可以得到函数图像在与

3、x轴交点处的导数,再利用导数及函数的零点列出三元一次方程组,解之即得所求.【解析】选A.由已知可得此函数为三次函数且过原点,故可设函数解析式为y=f(x)=ax3+bx2+cx,所以f(x)=3ax2+2bx+c,由题意知f(0)=-1,f(2)=3,f(2)=0,即c=-1,12a+4b+c=3,8a+4b+2c=0,解之得a=,b=-,c=-1.所以y=x3-x2-x.4.(2014陕西高考理科T10)如图,某飞行器在4千米高空水平飞行,从距着陆点A的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图象的一部分,则函数的解析式为()A.y=错误!未找到引用源。x3-错误!未找到引用源。

4、xB.y=错误!未找到引用源。x3-错误!未找到引用源。xC.y=错误!未找到引用源。x3-xD.y=-错误!未找到引用源。x3+错误!未找到引用源。x【解题指南】根据函数的图象可以得到函数的极值点,再利用导数求得解析式的极值点,二者能够统一的即为所求.【解析】选A.由函数图象可得函数的极值点为5,对四个选项中函数解析式进行求导,只有选项A的函数解析式求导得y=3x2-,令y=0得x=5,所以只有选项A的解析式与图象相统一,故选A.5. (2014新课标全国卷高考文科数学T11)若函数f(x)=kx-lnx在区间(1,+)单调递增,则k的取值范围是() A. B. C. D. 【解题提示】利用

5、函数f(x)在区间(1,+)上单调递增,可得其导函数f(x)0恒成立,分离参数,求得k的取值范围.【解析】选D.因为f(x)在(1,+)上递增,所以f(x)0恒成立,因为f(x)=kx-lnx,所以f(x)=k-0.即k1.所以k2=3,|x0|,所以+2,所以+32.故选C.8.(2014四川高考理科9)已知,现有下列命题:;.其中的所有正确命题的序号是( )A. B. C. D. 【解题提示】可直接验证都正确,对于,可以利用奇偶性和导数确定其单调性来加以判断【解析】选A. 对于:,故正确;对于: ,故正确;对于:当时,令(),因为,所以在单增,即,又与为奇函数,所以成立,故正确.【误区警示

6、】本题容易错误理解为中的,与中的不对应,导致错选C二、解答题9. (2014湖北高考文科T13)(本小题满分14分)为圆周率,e=2.71828为自然对数的底数.(1)求函数f(x)=错误!未找到引用源。的单调区间.(2)求e3,3e,e,e,3,3这6个数中的最大数与最小数.【解题指南】(1)先求函数定义域,然后在定义域内解不等式即可得到单调增、减区间.(2)由e3,得eln3eln,lneln3,即ln3elne,lneln3.再根据函数y=lnx,y=ex,y=x在定义域上单调递增,可得3ee3,e3e3,从而六个数的最大数在3与3之中,最小数在3e与e3之中.由e3及(1)的结论,得f

7、()f(3)f(e),即0,即0xe时,函数f(x)单调递增.当f(x)e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+).(2)因为e3,所以eln3eln,lneln3,即ln3elne,lneln3.于是根据函数y=lnx,y=ex,y=x在定义域上单调递增,可得3ee3,e3e3.故这6个数的最大数在3与3之中,最小数在3e与e3之中.由e3及(1)的结论,得f()f(3)f(e),即.由,得ln33;由,得ln3elne3,所以3ee3.综上,6个数中的最大数是3,最小数是3e.10. (2014湖北高考理科22)为圆周率,为自然对数的底数

8、.(1) 求函数的单调间;(2) 求这6个数中的最大数与最小数;(3) 将这6个数按从小到大的顺序排列,并证明你的结论.【解题指南】()先求函数定义域,然后在定义域内解不等式,即可得到单调增、减区间;()由e3,得eln3eln,lneln3,即ln3elne,lneln3再根据函数y=lnx,y=ex,y=x在定义域上单调递增,可得3ee3,e3e3,从而六个数的最大数在3与3之中,最小数在3e与e3之中由e3及()的结论,得f()f(3)f(e),即,由此进而得到结论;()由()可知,3ee33,3ee3,又由()知,得,故只需比较e3与e和e与3的大小由()可得0xe时,令,有,从而,即

9、得,由还可得lnelne3,3ln,由此易得结论; 【解析】(1)函数的定义域为,因为,所以。当,即时,函数单调递增;当,即时,函数单调递减;故函数的单调增区间为,单调减区间为。(2)因为,所以,即。于是根据函数在定义域上单调递增,可得,。故这6个数的最大数在与之中,最小数在与之中由及(1)的结论,得,即。由,得,所以;由,得,所以。综上,6个数中的最大数是,最小数是。(3)由(2)知,.又由(2)知,得。故只需比较与和的大小。由(1)知,当时,即。在上式中,令,又,则,从而即得 。 由得,即,亦即,所以。又由得,即,所以综上可得,即6个数从小到大的顺序为。11. (2014湖南高考文科21)

10、(本小题满分13分)已知函数.(1) 求的单调区间;(2)记为的从小到大的第个零点,证明:对一切,有【解题提示】(1)利用导数的符号判断单调性,(2)利用放缩法证明。【解析】(1)令得当时,此时当时,此时故的单调递减区间为,单调递增区间为。(2) 由(1)知,在区间上单调递减,又,故当时,因为且函数的图象是连续不断的,所以在区间内至少存在一个零点,又在区间上是单调的,故因此当时,当时,当时,综上所述,对一切,.12. (2014湖南高考理科22)已知常数,函数.(1)讨论在区间上的单调性;(2)若存在两个极值点,且,求的取值范围.【解题提示】(1)先求导数,利用导数的符号判断增减性,表达式中有

11、参数a,需要分类讨论;(2)注意到定义域,限制a的取值范围,有极值点时其导数有两个变号零点。【解析】(1)对函数求导可得,因为,所以当时,即时,恒成立,则函数在单调递增,当时, ,所以当时,当时,所以函数在区间单调递减,在单调递增. (2) 因为,所以当时,不存在极值点,所以要使得有两个极值点,必有。又的两个极值点只可能是,且由的定义域可知,所以,解得。此时分别是的极小值点,和极大值点。令,且当时,;当时,;记当时,所以在时,是减函数,故当时,不合题意。当时,所以在时,是减函数,故当时,综上所述,满足条件的的取值范围为。13.(2014广东高考文科T21)(14分)已知函数f(x)=错误!未找

12、到引用源。x3+x2+ax+1(aR).(1)求函数f(x)的单调区间.(2)当a0时,试讨论是否存在x0使得f(x0)=f.【解题提示】(1)求导后对a进行分类讨论.(2)要根据a的取值对x0的存在性进行讨论.【解析】(1)因为f(x)=x2+2x+a,二次方程x2+2x+a=0的判别式=4-4a.当a1时,0,f(x)0,此时(-,+)是函数f(x)的单调递增区间;当a0,f(x)=0有两个实数根x=-1+和x=-1-,此时(-,-1-),(-1+,+)是函数f(x)的单调递增区间,(-1-,-1+)是函数f(x)的单调递减区间.综上,当a1时,函数f(x)只有单调递增区间(-,+);当a

13、1时,函数f(x)的单调递增区间是(-,-1-),(-1+,+),单调递减区间是(-1-,-1+).(2)f=+,f(x0)-f=+ax0+1-,整理得f(x0)-f=(4+14x0+7+12a),若存在x0使得f(x0)=f,则二次方程4+14x0+7+12a=0在区间上有解,因为a0,x0=(x0=舍去),且01,解得711,平方整理得-a-.令=,解得a=-.当a(-,-)时,存在x0使得f(x0)=f;若a=-或a时,不存在x0使得f(x0)=f.14.(2014广东高考理科)(14分)设函数f(x)=,其中k-2.(1)求函数f(x)的定义域D(用区间表示).(2)讨论函数f(x)在

14、D上的单调性.(3)若kf(1)的x的集合(用区间表示).【解题提示】(1)设t=x2+2x+k,解不等式t2+2t-30后再解关于x的不等式.(2)设t=x2+2x+k,u=t2+2t-3,f(x)=,通过复合讨论函数f(x)的单调性.(3)将f(x)f(1)作等价转化,再构造二次函数,运用图象求x的范围.【解析】(1)因为k0得t1,由t-3得x2+2x+k+30,解得-1-x1得x2+2x+k-10,解得x-1+,f(x)的定义域D=(-,-1-)(-1-,-1+)(-1+,+).(2)由(1)知-1-3,-1-1,-1+1,令t=x2+2x+k,u=t2+2t-3,f(x)=.当x0)

15、单调递增,f(x)=单调递减,这时f (x)为增函数(“同增异减”是研究复合函数单调性的有效方法);当-1-x-1+时,t单调递增,同理得f(x)为减函数;所以f(x)在(-,-1-),(-1-,-1)上为增函数;在(-1,-1+),(-1+,+)上为减函数(数形结合,明确单调区间).(3)因为kf(1),有(x2+2x+k)2+2(x2+2x+k)-3(3+k)2+2(3+k)-3,设m=x2+2x,则(m+k)2+2(m+k)5,设x=3关于x=-k-1的对称点为x,则=-k-1x=-2k-5,由g(x)的图象知满足(*)的m的范围为3m-2k-5,即3x2+2x-2k-5,(数形结合,降

16、低运算量)所以解得又-1-1-,-1-1,-1+0时21.(2014山东高考文科20)设函数,其中为常数.()若,求曲线在点处的切线方程;()讨论函数的单调性.【解题指南】(1)先利用导数公式求函数的导数,根据曲线在点的切线求出切点.(2)本题可对a行分类讨论.【解析】(1)(2) 22.(2014陕西高考文科T21)(本小题满分14分)设函数f(x)=lnx+,mR.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值.(2)讨论函数g(x)=f(x)-零点的个数.(3)若对任意ba0,1恒成立,求m的取值范围.【解题指南】(1)利用导数确定函数单调性,再由单调性求函数的极值.(2)首

17、先变形将函数零点个数转化为直线与曲线的交点个数,然后求导确定函数最值,数形结合分类讨论确定零点的个数.(3)先用构造函数法将恒成立转化,再通过分离参数后求函数最值确定m的取值范围.【解析】(1)由题设,当m=e时,f(x)=lnx+,则f(x)=,所以当x(0,e),f(x)0,f(x)在(e,+)上单调递增,所以x=e时,f(x)取得最小值f(e)=lne+=2,所以f(x)的极小值为2.(2)由题设g(x)=f(x)-=-(x0),令g(x)=0,得m=-+x(x0).设(x)=-x3+x(x0),则(x)=-x2+1=-(x-1)(x+1),当x(0,1)时,(x)0,(x)在(0,1)

18、上单调递增;当x(1,+)时,(x)时,函数g(x)无零点;当m=时,函数g(x)有且只有一个零点;当0m时,函数g(x)无零点;当m=或m0时,函数g(x)有且只有一个零点;当0ma0,1恒成立,等价于f(b)-b0),所以(*)等价于h(x)在(0,+)上单调递减.由h(x)=-10在(0,+)恒成立,得m-x2+x=-+(x0)恒成立,所以m,所以m的取值范围.23.(2014陕西高考理科T21)(本小题满分14分)设函数f(x)=ln(1+x),g(x)=xf(x),x0,其中f(x)是f(x)的导函数.(1)令g1(x)=g(x),gn+1(x)=g(gn(x),nN+,求gn(x)

19、的表达式.(2)若f(x)ag(x)恒成立,求实数a的取值范围.(3)设nN+,比较g(1)+g(2)+g(n)与n-f(n)的大小,并加以证明.【解题指南】(1)根据已知求得g1(x),g2(x),g3(x),猜想gn(x)的表达式并用数学归纳法证明.(2)利用已知变形确立新函数,对新函数求导后,对参数分类确定函数单调性解决恒成立问题,从而求得实数a的取值范围.(3)利用特值法确定g(1)+g(2)+g(n)与n-f(n)的大小,用数学归纳法证明.【解析】由题设得,g(x)=(x0).(1)由已知,g1(x)=,g2(x)=g(g1(x)=,g3(x)=,可得gn(x)=.下面用数学归纳法证

20、明:当n=1时,g1(x)=,结论成立.假设n=k时结论成立,即gk(x)=.那么,当n=k+1时,gk+1(x)=g(gk(x)=,即结论成立.由可知,结论对nN+成立.(2)已知f(x)ag(x)恒成立,即ln(1+x)恒成立.设(x)=ln(1+x)-(x0),则(x)=-=,当a1时,(x)0)(当且仅当x=0,a=1时等号成立),所以(x)在有(x)0,所以(x)在(0,a-1上单调递减,所以(a-1)1时,存在x0,使(x)n-ln(n+1).证明如下:上述不等式等价于+,x0.令x=,nN+,则ln.下面用数学归纳法证明:当n=1时,ln2,结论成立.假设n=k时结论成立,即+l

21、n(k+1).那么,当n=k+1时,+ln(k+1)+0).令f(x)=0,解得x=0或x=.当x变化时,f(x),f(x)的变化情况如下表:x(-,0)0f(x)-0+0-f(x)0所以f(x)的单调递增区间是;单调递减区间是(-,0), .当x=0时,f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值=.(2)由f(0)=0及(1)知,当x时,f(x)0;当x时,f(x)2,即0a时,由=0可知,0A,而0B.所以A不是B的子集.当12,即a时,有f(2)0,且此时f(x)在(2,+)上单调递减,故A=(-,f(2),因而A(-,0);由f(1)0,有f(x)在(

22、1,+)上的取值范围包含(-,0),则(-,0)B,所以,AB.当时,有f(1)0,所以。当时,由(1)知,f(x)在上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值。当0a4时,由(1)知,f(x)在上单调递增,在上单调递减。所以f(x)在处取得最大值。又f(0)=1,f(1)=a,所以当0a1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处同时取得最小值;当1a4时,f(x)在x=0处取得最小值.27. (2014新课标全国卷高考文科数学T21)(本小题满分12分)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴

23、交点的横坐标为-2.(1)求a.(2)证明:当k1时,曲线y=f(x)与直线y=kx-2只有一个交点.【解题提示】(1)利用切线的性质结合已知条件求得a.(2)由f(x)=kx-2,化为“k= g(x)”型,通过研究函数g(x)的性质,画出g(x)的草图,完成证明.【解析】(1)因为f(x)=x3-3x2+ax+2,所以f(x)=3x2-6x+a,f(0)=a,设切点A(0,2),切线与x轴交点为B(-2,0),则kAB=f(0),即=a,所以,a=1.(2)当k1时,令f(x)-kx+2=x3-3x2+x-kx+4=0.则x2-3x+1+=k,x0,令g(x)=x2-3x+1+.则g(x)=

24、2x-3-=.令h(x)=2x3-3x2-4,则h(x)=6x2-6x=6x(x-1),所以当x(0,1)时,h(x)0,h(x)递增;且h(0)0,h(2)=0.所以当x2时,h(x)0,g(x)2时,h(x)0,g(x)0,g(x)在(0,+)上递增;所以当x(0,2)(0,+)时,g(x)g(2)=1,当x(-,0)时,单调递减,且g(x)(-,+).所以当k1时,g(x)=k仅有一个根,图像如图所示,所以,当k0时,g(x)0,求b的最大值.(3)已知1.41421.4143,估计ln2的近似值(精确到0.001).【解题提示】(1)求f(x),结合f(x)的符号判断单调性.(2)构造

25、函数,分离出b,求得b的最大值.(3)利用第(2)问的结论,估计ln2的近似值.【解析】 -20,等号仅当x=0时成立.所以f(x)在(-,+)单调递增.(2) +(8b-4)x,g(x)=2+(4b-2)= 当b2时,g(x)0,等号仅当x=0时成立,所以g(x)在(-,+)单调递增.而g(0)=0,所以对任意x0,g(x)0.当b2时,若x满足22b-2,即0xln(b-1+)时,g(x)0.而g(0)=0,因此当0xln(b-1+ )时,g(x)0.综上,b的最大值为2.(3)由(2)知,g(ln )-2b+2(2b-1)ln 2,当b=2时,g(ln )= -4 +6ln 20,ln

26、20.692 8;当b= +1时,ln(b-1+ )=ln ,g(ln )=-2+(3+2)ln 20,ln 20.693 4.所以ln 2的近似值为0.693.29.(2014四川高考理科21)已知函数,其中,为自然对数的底数(1)设是函数的导函数,求函数在区间上的最小值;(2)若,函数在区间内有零点,求的取值范围.【解题提示】本题主要考查导数的运算、导数在研究函数中的应用,函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合、划归与转化等数学思想,并考查思维的严谨性.【解析】(1)因为 ,所以,又,因为, 所以:若,则,所以函数在区间上单增,

27、若,则,于是当时,当时,所以函数在区间上单减,在区间上单增,若,则,所以函数在区间上单减,综上所述,当时,在区间上的最小值为;当时,在区间上的最小值为;当时,在区间上的最小值为(2)由,又,若函数在区间内有零点,则函数在区间内不可能单调递增,也不可能单调递减,由(1)知当或时,函数即在区间上单调,不可能满足上述要求故只有,此时,令(),则由,所以在区间上单增,在区间上单减,即恒成立,于是,函数在区间内不可能单调递增,也不可能单调递减,又 所以,综上,的取值范围为.30.(2014四川高考文科21)已知函数,其中,为自然对数的底数(1)设是函数的导函数,求函数在区间上的最小值; (2)若,函数在

28、区间内有零点,证明:【解题提示】本题主要考查导数的运算、导数在研究函数中的应用,函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合、划归与转化等数学思想,并考查思维的严谨性.【解析】(1)因为 ,所以,又,因为, 所以:若,则,所以函数在区间上单增,若,则,于是当时,当时,所以函数在区间上单减,在区间上单增,若,则,所以函数在区间上单减,综上所述,当时,在区间上的最小值为;当时,在区间上的最小值为;当时,在区间上的最小值为(2)由,又,若函数在区间内有零点,则函数在区间内不可能单调递增,也不可能单调递减,由(1)知当或时,函数即在区间上单调,不

29、可能满足上述要求故只有,此时,令(),则由,所以在区间上单增,在区间上单减,即恒成立,于是,函数在区间内不可能单调递增,也不可能单调递减,又, 所以.31. (2014重庆高考文科19)已知函数 其中 且曲线 在点 处的切线垂直于直线 (1)求的值; (2) 求函数的单调区间与极值. 【解题提示】 (1)直接根据切线斜率即可求出 的值.(2)直接求导即可求出函数的单调区间与极值.【解析】(1)对求导得由 在点 处的切线垂直于直线知解得 (2)由(1)可知则令解得 或 因不在 的定义域 内,舍去.当 时, 故在内为减函数;当 时, 故在内为增函数.由此知函数在 时取得极小值关闭Word文档返回原板块

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3