ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:649KB ,
资源ID:410573      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-410573-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高考数学人教B版一轮复习训练:9-5 椭圆 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高考数学人教B版一轮复习训练:9-5 椭圆 WORD版含解析.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一椭圆的定义及标准方程1.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆2.已知ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则ABC的周长是()A.2B.6C.4D.123.椭圆+=1的左焦点为F,直线x=t与椭圆相交于点M,N,当FMN的周长最大时,FMN的面积

2、是()A.B.C.D.4.过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方程为世纪金榜导学号()A.+=1B.+=1C.+=1D.+=15.已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比是2,则椭圆C的方程是_.世纪金榜导学号【解析】1.选A.由折叠过程可知,点M与点F关于直线CD对称,故|PM|=|PF|,所以|PO|+|PF|=|PO|+|PM|=|OM|=r,又显然|OM|OF|,由椭圆的定义可知,点P的轨迹为椭圆.2.选C.如图,设椭圆+y2=1的另一个焦点为F2,则F2在BC上,即|BC|=|BF2|+|F2C|,又因为B,C都在椭圆+y2=1上,所以|BA

3、|+|BF2|=|CA|+|CF2|=2a=2,于是,ABC的周长为|BA|+|BC|+|CA|=|BA|+|BF2|+|F2C|+|CA|=4.3.选C.如图,设右焦点为F,连接MF,NF,FMN的周长为|FM|+|FN|+|MN|=4-(|MF|+|NF|-|MN|),所以当|MF|+|NF|-|MN|最小时,周长最大,因为|MF|+|NF|MN|,所以当直线x=t过右焦点时,FMN的周长最大.又c=1,所以把x=1代入椭圆标准方程,得+=1,解得y=,所以此时FMN的面积S=22=.4.选C.(方法一:定义法)椭圆+=1的焦点为(0,-4),(0,4),即c=4.由椭圆的定义知,2a=+

4、,解得a=2,由c2=a2-b2,可得b2=4,所以所求椭圆的标准方程为+=1.(方法二:待定系数法)设所求椭圆方程为+=1(kb0).由题意得解得所以所求椭圆的标准方程为+=1.5.设椭圆C的方程为+=1(ab0).由题意知解得a2=16,b2=12,所以椭圆C的方程为+=1.答案:+=11.椭圆定义的应用(1)椭圆定义的应用主要有两个方面:一是判断平面内动点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积,弦长、最值和离心率等.(2)椭圆的定义式必须满足2a|F1F2|.2.焦点三角形的结论椭圆上的点P(x0,y0)与两焦点F1,F2构成的PF1F2叫做焦点三角形.如图所示,设F1P

5、F2=.(1)4c2=|PF1|2+|PF2|2-2|PF1|PF2|cos .(2)焦点三角形的周长为2(a+c).(3)=|PF1|PF2|sin =b2 tan=c|y0|,当|y0|=b,即P为短轴端点时,取得最大值,为bc.3.求椭圆的标准方程的方法(1)求椭圆的标准方程多采用定义法和待定系数法.(2)利用定义法求椭圆方程,要注意条件2a|F1F2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx2+ny2=1(m0,n0,mn)的形式.4.利用待定系数法求椭圆标准方程的四个步骤考点二弦及弦中点问题【典例】1.已知椭圆+y2=1,过点P且被P点平分的弦所在直线的方

6、程为_.2.焦点是F(0,5),并截直线y=2x-1所得弦的中点的横坐标是的椭圆的标准方程为_.世纪金榜导学号【解题导思】序号联想解题1一看到弦的中点(即中点弦)问题,即联想到点差法2当题目中出现弦的中点并出现中点的横坐标(或纵坐标)时,立即想到点差法(也可考虑联立方程)【解析】1.设弦的两端点为A(x1,y1),B(x2,y2),中点为(x0,y0),则有两式作差得+(y2-y1)(y2+y1)=0,因为x2+x1=2x0,y2+y1=2y0,=kAB,代入后求得kAB=-=-,所以弦所在直线的方程为y-=-,即x+3y-2=0.答案:x+3y-2=02.设所求的椭圆方程为+=1(ab0),

7、直线被椭圆所截弦的端点为A(x1,y1),B(x2,y2).由题意,可得弦AB的中点坐标为,且=,=-.将A,B两点坐标代入椭圆方程中,得两式相减并化简,得=-=-2=3,所以a2=3b2,又c2=a2-b2=50,所以a2=75,b2=25,故所求椭圆的标准方程为+=1.答案:+=11.椭圆中弦及弦中点问题的类型及解决策略常见类型解决策略过定点,定点为弦中点;平行弦中点的轨迹;过定点的弦的中点轨迹根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点坐标点差法:利用弦两端点适合椭圆方程,作差构造中点与斜率的关系2.椭圆中弦及弦中点问题的注意事项(1)合理消元,消元时可以选择消去

8、y,也可以消去x.(2)利用弦长公式、点到直线的距离公式等将所求量表示出来.(3)涉及弦中点的问题常用“点差法”解决.1.已知直线l:y=k(x-1)与椭圆C:+y2=1交于不同的两点A,B,AB中点横坐标为,则k=_.【解析】设A(x1,y1),B(x2,y2),由得(4k2+1)x2-8k2x+4k2-4=0,因为直线l过椭圆内的定点(1,0),所以0,x1+x2=,所以=,整理得k2=,所以k=.答案:2.已知直线y=x+m被椭圆2x2+y2=2截得的线段的中点的横坐标为,则中点的纵坐标为_.【解析】设线段的两端点分别为A(x1,y1),B(x2,y2),中点为M(x0,y0),则x0=

9、,y0=+m,x1+x2=2x0=,y1+y2=2y0=+2m,则有两式作差得2(x1+x2)(x1-x2)+(y1-y2)(y1+y2)=0,即k=-=-=1,解得m=-,所以y0=+=-.答案:-考点三椭圆的简单几何性质命题精解读考什么:(1)考查椭圆的顶点、离心率及直线与椭圆中的最值范围问题.(2)考查数学运算、逻辑推理、直观想象的核心素养及数形结合等思想方法.怎么考:结合椭圆定义及三角形性质(例如中位线)等考查离心率;结合函数单调性或基本不等式考查最值问题.新趋势:椭圆离心率的求解仍是考查的重点.学霸好方法1.离心率的求解借助条件建立a,b,c关系或利用特殊值法求解.2. 与函数、不等

10、式结合考查范围最值,要注意定义域问题.求椭圆的离心率【典例】(2020泉州模拟)设F1,F2分别是椭圆C:+=1(ab0)的左、右焦点,点P在椭圆C上,若线段PF1的中点在y轴上,PF1F2=30,则椭圆的离心率为()A.B.C.D.【解析】选A.如图,设PF1的中点为M,连接PF2.因为O为F1F2的中点,所以OM为PF1F2的中位线,所以OMPF2,所以PF2F1=MOF1=90,因为PF1F2=30,所以|PF1|=2|PF2|,由勾股定理得|F1F2|=,由椭圆定义得2a=|PF1|+|PF2|=3|PF2|,即a=,2c=|F1F2|=|PF2|,即c=,则e=.如何求椭圆离心率?提

11、示:解题的关键是借助图形建立关于a,b,c的关系式(等式或不等式),转化为e的关系式.最值、取值范围问题【典例】(2019重庆模拟)已知椭圆C:+=1(ab0)的左顶点为M(-2,0),离心率为.(1)求椭圆C的方程.世纪金榜导学号(2)过点N(1,0)的直线l交椭圆C于A,B两点,当取得最大值时,求MAB的面积.【解析】(1)由题意可得:a=2,=,得c=,则b2=a2-c2=2.所以椭圆C:+=1.(2)当直线l与x轴重合时,不妨取A(-2,0),B(2,0),此时=0;当直线l与x轴不重合时,设直线l的方程为:x=ty+1,A(x1,y1),B(x2,y2),联立得(t2+2)y2+2t

12、y-3=0,显然0,y1+y2=,y1y2=.所以=(x1+2)(x2+2)+y1y2=(ty1+3)(ty2+3)+y1y2=(t2+1)y1y2+3t(y1+y2)+9=(t2+1)+3t+9=+9=+9=.当t=0时,取最大值.此时直线l方程为x=1,不妨取A,B,所以|AB|=.又|MN|=3,所以MAB的面积S=3=.如何求解范围、最值问题?提示:(1)与椭圆几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式,如-axa,-byb,0eb0)的右焦点,过F且垂直于x轴的弦长为6,若A(-2,),点M为椭圆上任一

13、点,则|MF|+|MA|的最大值为_.【解析】设椭圆的左焦点为F,由椭圆的右焦点为F(2,0),得c=2,又过F且垂直于x轴的弦长为6,即=6,则=3,解得a=4,所以|MF|+|MA|=8-|MF|+|MA|=8+|MA|-|MF|,当M,A,F三点共线时,|MA|-|MF|取得最大值,(|MA|-|MF|)max=|AF|=,所以|MF|+|MA|的最大值为8+.答案:8+已知椭圆+=1(ab0)的左、右焦点分别为F1、F2,P是椭圆上一点,PF1F2是以F2P为底边的等腰三角形,且60PF1F2120,则该椭圆的离心率的取值范围是()A.B.C.D.【解析】选B.由题意可得|PF2|2=|F1F2|2+|PF1|2-2|F1F2|PF1|cosPF1F2=4c2+4c2-22c2ccosPF1F2,即|PF2|=2c,所以a=c+c,又60PF1F2120,所以-cosPF1F2,所以2ca(+1)c,则,即e. 关闭Word文档返回原板块

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3