1、42复数的运算(2)教学目的:1.理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算2.理解并掌握复数的除法运算实质是分母实数化类问题教学重点:复数代数形式的除法运算教学难点:对复数除法法则的运用授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1.虚数单位:(1)它的平方等于-1,即; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立2. 与1的关系: 就是1的一个平方根,即方程x2=1的一个根,方程x2=1的另一个根是3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=14.复数的
2、定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、bR)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:NZQRC.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,dR,那么a+bi=c+dia=c,b=d一般地
3、,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小只有当两个复数不全是实数时才不能比较大小7. 复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、bR)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数8复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.9. 复数z1与z2
4、的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.10. 复数的加法运算满足交换律: z1+z2=z2+z1.11. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)二、讲解新课:乘法运算规则:规定复数的乘法按照以下的法则进行:设z1=a+bi,z2=c+di(a、b、c、dR)是任意两个复数,那么它们的积(a+bi)(c+di)=(acbd)+(bc+ad)i.其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.2.乘法运算律:(1)z1(z2z3)=(z1z2)z3
5、证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3R).z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i,z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i.又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1.z1z2=z2z1.(2)z1(z2+z3)=z1z2+z1z3证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3R). (z1z2)z3=(a1+b1i)(a2+b2i
6、)(a3+b3i)=(a1a2-b1b2)+(b1b2+a1b2)i(a3+b3i)=(a1a2-b1b2)a3-(b1a2+a1b2)b3+(b1a2+a1b2)a3+(a1a2-b1b2)b3i=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2b3+a1a2b3-b1b2b3)i,同理可证:z1(z2z3)=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2a3+a1a2b3-b1b2b3)i,(z1z2)z3=z1(z2z3).(3)z1(z2+z3)=z1z2+z1z3.证明:设z1=a1+b1i,z2=a2+b2i
7、,z3=a3+b3i(a1,a2,a3,b1,b2,b3R).z1(z2+z3)=(a1+b1i)(a2+b2i)+(a3+b3i)=(a1+b1i)(a2+a3)+(b2+b3)i=a1(a2+a3)-b1(b2+b3)+b1(a2+a3)+a1(b2+b3)i=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i.z1z2+z1z3=(a1+b1i)(a2+b2i)+(a1+b1i)(a3+b3i)=(a1a2-b1b2)+(b1a2+a1b2)i+(a1a3-b1b3)+(b1a3+a1b3)i=(a1a2-b1b2+a1a3-b1b3)+(b1a2+
8、a1b2+b1a3+a1b3)i=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)iz1(z2+z3)=z1z2+z1z3.3. 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,yR)叫复数a+bi除以复数c+di的商,记为:(a+bi)(c+di)或者4.除法运算规则:设复数a+bi(a,bR),除以c+di(c,dR),其商为x+yi(x,yR),即(a+bi)(c+di)=x+yi(x+yi)(c+di)=(cxdy)+(dx+cy)i.(cxdy)+(dx+cy)i=a+bi.由复数相等定义可知解这个方程组,得于是有:(
9、a+bi)(c+di)= i.利用(c+di)(cdi)=c2+d2.于是将的分母有理化得:原式=.(a+bi)(c+di)=.点评:是常规方法,是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数c+di与复数cdi,相当于我们初中学习的的对偶式,它们之积为1是有理数,而(c+di)(cdi)=c2+d2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法5*.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数三、讲解范例:例1计算(1-2i)(3+4i)(-2+i)解:(1-2i)(3+4i)(-2
10、+i)(11-2i) (-2+i)= -20+15i.例2计算解:例3计算解:例4已知z是虚数,且z+是实数,求证:是纯虚数.证明:设z=a+bi(a、bR且b0),于是z+=a+bi+=a+bi+.z+R,b=0.b0,a2+b2=1.b0,a、bR,是纯虚数四、课堂练习:1.设z=3+i,则等于A.3+i B.3iC.D.2.的值是A.0B.iC.iD.13.已知z1=2i,z2=1+3i,则复数的虚部为A.1B.1C.iD.i4.设 (xR,yR),则x=_,y=_.答案:1.D 2.A 3.A4. , 五、小结 :复数的乘法法则是:(a+bi)(c+di)=(acbd)+(bc+ad)i.复数的代数式相乘,可按多项式类似的办法进行,不必去记公式.复数的除法法则是:i(c+di0).两个复数相除较简捷的方法是把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简 六、课后作业:七、板书设计(略)八、课后记: