ImageVerifierCode 换一换
格式:DOC , 页数:62 ,大小:1.28MB ,
资源ID:406712      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-406712-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016届高三数学(文理通用)一轮复习教师用书:第十章 统计与统计案例 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016届高三数学(文理通用)一轮复习教师用书:第十章 统计与统计案例 WORD版含解析.doc

1、第1讲随机抽样最新考纲1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法知 识 梳 理1简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(nN),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样(2)最常用的简单随机抽样的方法:抽签法和随机数法(3)应用范围:总体中的个体数较少2系统抽样(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样(2)系统抽样的操作步骤第一步编号:

2、先将总体的N个个体编号;第二步分段:确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,取k;第三步确定首个个体:在第1段用简单随机抽样确定第一个个体编号l(lk);第四步获取样本:按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(lk),再加k得到第3个个体编号(l2k),依次进行下去,直到获取整个样本(3)应用范围:总体中的个体数较多3分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样(2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样诊

3、断 自 测1判断正误(在括号内打“”或“”)精彩PPT展示(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大()(2)系统抽样在起始部分抽样时采用简单随机抽样()(3)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平()(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关()2(2014四川卷)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析在这个问题中,5 000名居民的阅读时间的全体是()A总体 B个体C样本的容量 D从总体中抽取的一

4、个样本解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.答案A3(2014湖南卷)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()Ap1p2p3 Bp2p3p1Cp1p3p2 Dp1p2p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D.答案D4(2014天津卷)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用

5、分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查已知该校一年级、二年级、三年级、四年级的本科生人数之比为4556,则应从一年级本科生中抽取_名学生解析根据题意,应从一年级本科生中抽取的人数为:30060.答案605大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为_解析因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为适合答案简单随机抽样考点一简单随机抽样【例1】 下列抽取样本的方式是否属于简单随机抽样?(1)从

6、无限多个个体中抽取100个个体作为样本(2)盒子里共有80个零件,从中选出5个零件进行质量检验在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里(3)从20件玩具中一次性抽取3件进行质量检验(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛解(1)不是简单随机抽样因为被抽取的样本总体的个体数是无限的,而不是有限的(2)不是简单随机抽样因为它是放回抽样(3)不是简单随机抽样因为这是“一次性”抽取,而不是“逐个”抽取(4)不是简单随机抽样因为不是等可能抽样规律方法(1)简单随机抽样需满足:被抽取的样本总体的个体数有限;逐个抽取;是不放回抽取;是等可能抽取(2)简单随机

7、抽样常有抽签法(适用总体中个体数较少的情况)、随机数法(适用于个体数较多的情况)【训练1】 (1)总体由编号为01,02,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B07 C02 D01(2)下列抽样试验中,适合用抽签法的有()A从某厂生产的5 000件产品中抽取600件进行质量检验B从某厂生产的两箱(每箱18件)产品中抽取6件进行质

8、量检验C从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D从某厂生产的5 000件产品中抽取10件进行质量检验解析(1)从第1行第5列、第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.(2)A,D中的总体中个体数较多,不适宜抽签法,C中甲、乙两厂的产品质量有区别,也不适宜抽签法,故选B.答案(1)D(2)B考点二系统抽样【例2】 (1)已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按140编号,并按编号顺序平均分成5组按系统抽样方法在各组内抽取一个号码若第1组抽出的号码为2,则所有被抽出职工的号码为_(2)为了解1

9、 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A50 B40 C25 D20解析(1)由系统抽样知识知,第一组18号;第二组为916号;第三组为1724号;第四组为2532号;第五组为3340号第一组抽出号码为2,则依次为10,18,26,34.(2)由系统抽样的定义知,分段间隔为25.故答案为C.答案(1)2,10,18,26,34(2)C规律方法(1)系统抽样又称“等距抽样”,所以依次抽取的样本对应的号码就组成一个等差数列,首项就是第1组所抽取的样本号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码,但有时也不是按一定

10、间隔抽取的(2)系统抽样时,如果总体中的个体数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行【训练2】 (1)从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A5,10,15,20,25 B3,13,23,33,43C1,2,3,4,5 D2,4,6,16,32(2)(2014临沂模拟)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A10 B11 C1

11、2 D16解析(1)间隔距离为10,故可能编号是3,13,23,33,43.(2)因为29号、42号的号码差为13,所以31316,即另外一个同学的学号是16.答案(1)B(2)D考点三分层抽样【例3】 (1)(2014湖北卷)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为_件(2)某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生解析(1)由题意知,甲、乙两套设备产品数量抽样比为53,故

12、乙设备生产的产品共4 8001 800(件)(2)高二年级学生人数占总数的.样本容量为50,则高二年级抽取:5015(名)学生答案(1)1 800(2)15规律方法在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即niNinN.【训练3】 (1)(2014云南检测)某公司一共有职工200人,其中老年人25人,中年人75人,青年人100人,有关部门为研究老年人、中年人、青年人对公司发展的态度问题,现在用分层抽样的方法从这个公司抽取m人进行问卷调查,如果抽到老年人3人,那么m()A16 B20 C24 D

13、28(2)(2014广东卷)已知某地区中小学生人数和近视情况分别如图1和图2所示为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A100,10 B200,10 C100,20 D200,20解析(1)由,解得m24,故选C.(2)共有10 000名学生,样本容量为10 0002%200,高中生近视人数20020,故选D.答案(1)C(2)D思想方法三种抽样方法中简单随机抽样是最基本的抽样方法,是其他两种方法的基础,适用范围不同,要根据总体的具体情况选用不同的方法;它们的共同点都是等概率抽样,即抽样过程中每个个体被抽取的概率相

14、等,体现了这三种抽样方法的客观性和公平性,若样本容量为n,总体的个体数为N,则用这三种方法抽样时,每一个个体被抽到的概率都是.易错防范应用分层抽样应遵循的三点:(1)分层,将相似的个体归为一类,即为一层,分层要求每层的各个个体互不交叉,即不重复不遗漏(2)分层保证每个个体等可能被抽取,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等(3)若各层应抽取的个体数不都是整数,则应当调整样本容量,先剔除“多余”的个体.基础巩固题组(建议用时:30分钟)一、选择题1某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取

15、了100名学生的成绩,就这个问题来说,下面说法正确的是 ()A1 000名学生是总体B每个学生是个体C1 000名学生的成绩是一个个体D样本的容量是100解析1 000名学生的成绩是总体,其容量是1 000,100名学生的成绩组成样本,其容量是100.答案D2(2014西安质检)现要完成下列3项抽样调查:从10盒酸奶中抽取3盒进行食品卫生检查科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量

16、为20的样本较为合理的抽样方法是()A简单随机抽样,系统抽样,分层抽样B简单随机抽样,分层抽样,系统抽样C系统抽样,简单随机抽样,分层抽样D分层抽样,系统抽样,简单随机抽样解析对于,个体没有差异且总数不多可用随机抽样法,是简单随机抽样;对于,将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号,是系统抽样;对于,个体有明显的差异,所以选用分层抽样,故选A.答案A3某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人数为(

17、)A11 B12C13 D14解析由20,即每20人抽取1人,所以抽取编号落入区间481,720的人数为12(人)答案B4某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为()A800 B1 000 C1 200 D1 500解析因为a,b,c成等差数列,所以2bac,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双皮靴答案C5(1)某学校为了了解2014

18、年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本(2)从10名家长中抽取3名参加座谈会.简单随机抽样法;.系统抽样法;.分层抽样法问题与方法配对正确的是()A(1),(2) B(1),(2)C(1),(2) D(1),(2)解析通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法答案A二、填空题6课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_解析由已知得抽

19、样比为,丙组中应抽取的城市数为82.答案27(2015青岛模拟)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号150号,并分组,第一组15号,第二组610号,第十组4650号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_的学生解析因为12522,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为57237号答案378.200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1200编号为40组,分别为15,610,196200,第5组抽取号码为22,第8组抽取号码为_若采用分

20、层抽样,40岁以下年龄段应抽取_人解析将1200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为223537;由已知条件200名职工中40岁以下的职工人数为20050%100,设在40岁以下年龄段中抽取x人,则,解得x20.答案3720三、解答题9某初级中学共有学生2 000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373xy男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解(1)0.19.x380.(2)初三年级人数为yz

21、2 000(373377380370)500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:50012名10某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取解用分层抽样方法抽取具体实施抽取如下:(1)2010015,2,14,4,从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人(2)因副处级以上干部与工人的人数较少,他们分别按110编号与120编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,

22、69编号,然后用随机数表法抽取14人(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本能力提升题组(建议用时:20分钟)11某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270,使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,18

23、0,195,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A、都不能为系统抽样B、都不能为分层抽样C、都可能为系统抽样D、都可能为分层抽样解析在1108之间有4个,109189之间有3个,190270之间有3个,符合分层抽样的规律,可能是分层抽样同时,从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理符合分层抽样的规律,可能是分层抽样时,从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规

24、律,则可能是系统抽样得到的,故选D.答案D12(2015青岛模拟)将参加夏令营的600名学生编号为001,002,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第营区,从301到495在第营区,从496到600在第营区,三个营区被抽中的人数依次为()A26,16,8 B25,17,8C25,16,9 D24,17,9解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(kN*)组抽中的号码是312(k1)令312(k1)300得k,因此第营区被抽中的人数是25;令30031

25、2(k1)495得s可知乙的成绩较稳定从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高规律方法平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小【训练3】 (1)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B. C36 D.(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()

26、A甲的成绩的平均数小于乙的成绩的平均数B甲的成绩的中位数等于乙的成绩的中位数C甲的成绩的方差小于乙的成绩的方差D甲的成绩的极差小于乙的成绩的极差解析(1)由题意知91,解得x4.所以s2(8791)2(9491)2(9091)2(9191)2(9091)2(9491)2(9191)2(16910190).(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为(46)2(56)2(66)2(76)2(86)22,(56)2(56)2(56)2(66)2(96)2,C对;甲

27、、乙的成绩的极差均为4,D错答案(1)B(2)C思想方法1用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致通过频率分布表和频率分布直方图可以对总体作出估计2茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作3若取值x1,x2,xn的频率分别为p1,p2,pn,则其平均值为x1p1x2p2xnpn;若

28、x1,x2,xn的平均数为,方差为s2,则ax1b,ax2b,axnb的平均数为ab,方差为a2s2.易错防范1在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义2利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和3直方图与条形图不要搞混(1)条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)是固定的;直方图是用面积表示各

29、组频率的多少,矩形的高度表示每一组的频率除以组距,宽度则表示各组的组距,因此其高度与宽度均有意义(2)由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列.基础巩固题组(建议用时:40分钟)一、选择题1(2014青岛检测)如图是一容量为100的样本的质量的频率分布直方图,样本质量均在5,20内,其分组为5,10),10,15),15,20,则样本质量落在15,20内的频数为()A10 B20C30 D40解析由题意得组距为5,故样本质量在5,10),10,15)内的频率分别为0.3和0.5,所以样本质量在15,20内的频率为10.30.50.2,频数为1000.220,故

30、选B.答案B2(2015西安检测)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法中一定正确的是()A这种抽样方法是一种分层抽样B这种抽样方法是一种系统抽样C这五名男生成绩的方差大于这五名女生成绩的方差D该班级男生成绩的平均数小于该班女生成绩的平均数解析依题意,显然不能确定题中的抽样方法是属于哪种抽样,因此选项A,B均不正确;选项D,仅有5名男生,5名女生的数学成绩,而不能得出该班男生成绩的平均数小于该班女生成绩的平均数;对于C,

31、注意到将这五个男生与女生的成绩均按由小到大排列,这五名男生的成绩相对较为分散,因此这五名男生成绩的方差大于这五名女生成绩的方差,故选C.答案C3.(2014临沂一模)某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则xy的值为()A7 B8 C9 D10解析由茎叶图可知,甲班学生成绩的众数是85,所以x5.乙班学生成绩的中位数是83,所以y3,所以xy538.答案B4(2015东北三省三校联考)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本

32、数据每个都减5后所得数据,则A,B两样本的下列数字特征对应相同的是()A平均数 B标准差 C众数 D中位数解析利用平均数、标准差、众数、中位数等统计特征数的概念求解由B样本数据恰好是A样本数据每个都减5后所得数据,可得平均数、众数、中位数分别是原来结果减去5,即与A样本不相同,标准差不变,故选B.答案B5(2015沈阳监测)某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试现随机调查了24名笔试者的成绩,如下表所示:分数段60,65)65,70)70,75)75,80)80,85)85,90人数234951据此估计允许参加面试的分数线大约是()A75

33、B80C85 D90解析因为参加笔试的400人中择优选出100人,故每个人被择优选出的概率P,因为随机调查24名笔试者,则估计能够参加面试的人数为246,观察表格可知,分数在80,85)有5人,分数在85,90)的有1人,故面试的分数线大约为80分,故选B.答案B二、填空题6(2014甘肃诊断)如图是根据某赛季甲、乙两名篮球运动员参加11场比赛的得分情况画出的茎叶图若甲运动员的中位数为a,乙运动员的众数为b,则ab_解析由茎叶图可知甲运动员的中位数为a19,乙运动员的众数为b11,所以ab8.答案87样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为_解析由题

34、可知样本的平均值为1,所以1,解得a1,所以样本的方差为(11)2(01)2(11)2(21)2(31)22.答案28(2015银川检测)某企业3个分厂同时生产同一种电子产品,第一、二、三分厂的产量之比为121,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980 h,1 020 h,1 032 h,则抽取的100件产品的使用寿命的平均值为_h.解析依题意,抽取的100件产品来自于第一、二、三分厂分别有25,50,25件,因此抽取的100件产品的使用寿命的平均值为(98025

35、1 032251 02050)1 013(h)答案1 013三、解答题9某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在50,60的频率及全班人数;(2)求分数在80,90之间的频数,并计算频率分布直方图中80,90间的矩形的高解(1)分数在50,60的频率为0.008100.08.由茎叶图知,分数在50,60之间的频数为2,所以全班人数为25.(2)分数在80,90之间的频数为25271024,频率分布直方图中80,90间的矩形的高为100.016.10(2014北京卷)从某校随机抽取100名学生,

36、获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号分组频数10,2)622,4)834,6)1746,8)2258,10)25610,12)12712,14)6814,16)2916,182合计100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)解(1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有62210(名),所以样本

37、中的学生一周课外阅读时间少于12小时的频率是10.9.故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组4,6)内的有17人,频率为0.17,所以a0.085.课外阅读时间落在组8,10)内的有25人,频率为0.25,所以b0.125.(3)样本中的100名学生该周课外阅读时间的平均数在第4组能力提升题组(建议用时:25分钟)11某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成0,5),5,10),30,35),35,40时,所作的频率分布直方图是()0731764430275543203

38、85430解析由于频率分布直方图的组距为5,排除C、D,又0,5),5,10)两组各一人,排除B,应选A.答案A12(2014益阳模拟)为了了解某校九年级1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是()A该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次B该校九年级学生1分钟仰卧起坐的次数的众数为27.5次C该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人D该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有32人解析由题图可知中位数是26.25次,众数是2

39、7.5次,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有160人故D是错误的,选D.答案D13在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列an,已知a22a1,且样本容量为300,则小长方形面积最大的一组的频数为_解析小长方形的面积由小到大构成等比数列an,且a22a1,样本的频率构成一个等比数列,且公比为2,a12a14a18a115a11,a1,小长方形面积最大的一组的频数为3

40、008a1160.答案16014为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:061.22.71.52.81.82.22.33.23.5252.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:321.71.90.80.92.41.22.61.31.4160.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的

41、疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解(1)设A药观测数据的平均数为A,B药观测数据的平均数为B,则A(0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4)2.3.B(3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5)1.6.则AB,因此A药的疗效更好(2)由观测结果绘制如下茎叶图:从茎叶图可以看出,A药疗效的试验结果有的叶集中在茎“2.”,“3.”上;B药疗效的试验结果有的叶集中在茎“0.”,“1.”上由上述可看出

42、A药的疗效更好.第3讲变量间的相关关系、统计案例最新考纲1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程;3.了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用知 识 梳 理1变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点散布在左上角到右下角的区域内,两个变量的相关关系为

43、负相关2回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析其基本步骤是:()画散点图;()求回归直线方程;()用回归直线方程作预报(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(2)回归直线方程的求法最小二乘法设具有线性相关关系的两个变量x,y的一组观察值为(xi,yi)(i1,2,n),则回归直线方程x的系数为:其中xi,yi,(,)称为样本点的中心(3)相关系数当r0时,表明两个变量正相关;当r0时,表明两个变量负相关r的绝对值越接近于1,表明两个变量的线性相关性越强r的绝对值越接近于0,表明两个变量之间

44、几乎不存在线性相关关系通常|r|大于0.75时,认为两个变量有很强的线性相关性3独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量(2)列联表:列出两个分类变量的频数表,称为列联表假设有两个分类变量X和Y,它们的可能取值分别为x1,x2和y1,y2,其样本频数列联表(称为22列联表)为22列联表y1y2总计x1aBabx2cDcd总计acbdabcd构造一个随机变量K2,其中nabcd为样本容量(3)独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验诊 断 自 测1判断正误(在括号内打“”或“”)精彩PPT展示(1)通过回归方程x可

45、以估计和观测变量的取值和变化趋势()(2)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大()(3)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀()2下面哪些变量是相关关系()A出租车车费与行驶的里程B房屋面积与房屋价格C身高与体重D铁块的大小与质量答案C3为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K20.99,根据这一数据分析,下列说法正确的是()A有99%的人认为该电视栏目优秀B有99%的人认为该电视栏目是否优秀与改革有关系C有99%的把握认为该电视栏目是否优秀与改革

46、有关系D没有理由认为该电视栏目是否优秀与改革有关系解析只有K26.635才能有99%的把握认为该电视栏目是否优秀与改革有关系,而既使K26.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关故只有D正确答案D4(2014湖北卷)根据如下样本数据x345678y4.02.50.50.52.03.0得到的回归方程为x,则()A.0,0 B.0,0C.0,0 D.0,0解析作出散点图,由散点图可知0,0,故选A.答案A5(人教A选修23P95例1改编)在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k27.63,根据这一数

47、据分析,我们有理由认为打鼾与患心脏病是_的(填“有关”或“无关”)答案有关考点一相关关系的判断【例1】 (1)在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线yx1上,则这组样本数据的样本相关系数为()A1 B0 C. D1(2)对变量x,y有观测数据(xi,yi)(i1,2,10),得散点图(1);对变量u,v有观测数据(ui,vi)(i1,2,10),得散点图(2)由这两个散点图可以判断()A变量x与y正相关,u与v正相关B变量x与y正相关,u与v负相关C变量x与y负相关,u与v正相

48、关D变量x与y负相关,u与v负相关解析(1)所有点均在直线上,则样本相关系数最大即为1,故选D.(2)由图(1)可知,各点整体呈递减趋势,x与y负相关;由图(2)可知,各点整体呈递增趋势,u与v正相关答案(1)D(2)C规律方法对两个变量的相关关系的判断有两个方法:一是根据散点图,具有很强的直观性,直接得出两个变量是正相关或负相关;二是计算相关系数法,这种方法能比较准确地反映相关程度,相关系数的绝对值越接近1,相关性就越强,相关系数就是描述相关性强弱的,相关性有正相关和负相关【训练1】 变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5)

49、;变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1)r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()Ar2r10 B0r2r1Cr20r1 Dr2r1解析对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r10;对于变量V与U而言,V随U的增大而减小,故V与U负相关,即r20,所以选C.答案C考点二回归方程的求法及回归分析【例2】 (2014新课标全国卷)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年

50、份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入附:回归直线的斜率和截距的最小二乘估计公式分别为:,.解(1)由所给数据计算得(1234567)4,(2.93.33.64.44.85.25.9)4.3, (ti)2941014928, (ti)(yi)(3)(1.4)(2)(1)(1)(0.7)00.110.520.931.614,0.5,4.30.542.3,所求回归方程为0.5t2.3.(2)

51、由(1)知,0.50,故2007至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元将2015年的年份代号t9代入(1)中的回归方程,得0.592.36.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元规律方法(1)正确理解计算,的公式和准确的计算是求线性回归方程的关键(2)回归直线方程 x必过样本点中心(,)(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测【训练2】 (2014云南检测)春节期间,某销售公司每天销售某种取暖商品的销售额y(单位:万元)与当天的平均气

52、温x(单位:)有关现收集了春节期间这个销售公司4天的x与y的数据列于下表:平均气温()2356销售额(万元)20232730根据以上数据,用线性回归的方法,求得y与x之间的线性回归方程x的系数,则_解析由表中数据可得4,25,所以线性回归方程x过点(4,25),代入方程得25(4),解得.答案考点三独立性检验【例3】 (2014安徽卷)某高校共有学生15 000人,其中男生10 500人,女生4 500人为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学

53、生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:0,2,(2,4,(4,6,(6,8,(8,10,(10,12估计该校学生每周平均体育运动时间超过4小时的概率;(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”附:K2P(K2k0)0.100.050.0100.005k02.7063.8416.6357.879解(1)30090,所以应收集90位女生的样本数据(2)由频率分布直方图得12(0.1000.025)0.75,所以该校学生每周平

54、均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有3000.75225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时又因为样本数据中有210份是关于男生的,90份是关于女生的所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均体育运动时间不超过4小时453075每周平均体育运动时间超过4小时16560225总计21090300结合列联表可算得K24.7623.841.所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”规律方法利用独立性检验,能够帮助我们对日常生活中的实际问

55、题作出合理的推断和预测独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,具体做法是根据公式K2,计算随机变量的观测值k,k值越大,说明“两个变量有关系”的可能性越大【训练3】 某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列22列联表:主食蔬菜主食肉类合计50岁以下50岁以上合计(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析解(1)22列联表如下:主食蔬菜主食肉类合计50岁以下481250岁以

56、上16218合计201030(2)因为K2106.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关思想方法1回归分析是处理变量相关关系的一种数学方法主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程2根据K2的值可以判断两个分类变量有关的可信程度易错防范1回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义根据回归方程进行预报,仅是一个预报值,而不是真实发生的值2独立性检验中统计

57、量K2的观测值k的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.基础巩固题组(建议用时:40分钟)一、选择题1(2015湖北七市(州)联考)为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线bxa近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A线性相关关系较强,b的值为3.25B线性相关关系较强,b的值为0.83C线性相关关系较强,b的值为0.87D线性相关关系太弱,无研究价值解析依题意,注意到题中的相关的点均集中在某条直线的附近,且该直线的斜率小于1,结合各选项知,故选B

58、.答案B2.设(x1,y1),(x2,y2),(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是()A直线l过点(,)Bx和y的相关系数为直线l的斜率Cx和y的相关系数在0到1之间D当n为偶数时,分布在l两侧的样本点的个数一定相同解析由样本的中心(,)落在回归直线上可知A正确;x和y的相关系数表示为x与y之间的线性相关程度,不表示直线l的斜率,故B错;x和y的相关系数应在1到0之间,故C错;分布在回归直线两侧的样本点的个数并不绝对平均,无论样本点个数是奇数还是偶数,故D错答案A3(2014重庆卷)已知变量x与y正相关,且由观测

59、数据算得样本平均数3,3.5,则由该观测数据算得的线性回归方程可能是()A.0.4x2.3 B.2x2.4C.2x9.5 D.0.3x4.4解析因为变量x和y正相关,则回归直线的斜率为正,故可以排除选项C和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A和B中的直线方程进行检验,可以排除B,故选A.答案A4(2015郑州质量预测)通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110附表:P(K2k0)0.0500.0100.001k03.8416.63510.828若由K2算得K27.8.参照

60、附表,得到的正确结论是()A有99%以上的把握认为“爱好该项运动与性别有关”B有99%以上的把握认为“爱好该项运动与性别无关”C在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”解析依题意,因为P(7.86.635)0.010,因此有99%以上的把握认为“爱好该项运动与性别有关”,故选A.答案A5(2014西宁复习检测)下列说法:将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;设有一个线性回归方程35x,变量x增加1个单位时,y平均增加5个单位;设具有相关关系的两个变量x,y的相关系数为r,则|

61、r|越接近于0,x和y之间的线性相关程度越强;在一个22列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大其中错误的个数是()A0 B1 C2 D3解析方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故正确;在回归方程35x中,变量x增加1个单位时,y平均减小5个单位,故不正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越强,故不正确;对分类变量x与y的随机变量的观测值K2来说,K2越大,“x与y有关系”的可信程度越大,故正确综上所述,错误结论的个数为2,故选C.答案C二、填空题6

62、已知回归方程4.4x838.19,则可估计x与y的增长速度之比约为_解析x每增长1个单位,y增长4.4个单位,故增长的速度之比约为14.4522.事实上所求的比值为回归直线方程斜率的倒数答案5227(2015嘉兴联考)为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下22列联表:理科文科男1310女720已知P(K23.841)0.05,P(K25.024)0.025.根据表中数据,得到K24.844.则认为选修文科与性别有关系出错的可能性为_解析K24.844,根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.

63、答案5%8某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_ cm.解析儿子和父亲的身高可列表如下:父亲身高173170176儿子身高170176182设线性回归方程为x,由表中的三组数据可求得1,且过中心点(173,176),故1761733,故线性回归方程为3x,将x182代入得孙子的身高为185 cm.答案185三、解答题9假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下表的统计资料:使用年限x(年)23456维修费用y(万元)2.23.85.5

64、6.57.0若由资料可知y对x呈线性相关关系,试求:(1)线性回归直线方程;(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?解(1)列表i12345合计xi2345620yi2.23.85.56.57.025xiyi4.411.422.032.542.0112.3x49162536904,5;x90;xiyi112.31.23,于是51.2340.08.所以线性回归直线方程为1.23x0.08.(2)当x12时,1.23120.0814.84(万元),即估计使用12年时,维修费用是14.84万元10(2015深圳调研)某企业通过调查问卷(满分50分)的形式对本企业900名员工的

65、工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:女47363248344443474641434250433549男3735344346363840393248334034(1)根据以上数据,估计该企业得分大于45分的员工人数;(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:“满意”的人数“不满意”的人数合计女16男14合计30(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?参考数据:P(K2k

66、0)0.100.0500.0250.0100.001k02.7063.8415.0246.63510.828解(1)从表中可知,30名员工中有8名得分大于45分,所以任选一名员工,他(她)的得分大于45分的概率是,所以估计此次调查中,该单位约有900240名员工的得分大于45分(2)完成下列表格:“满意”的人数“不满意”的人数合计女12416男31114合计151530(3)假设H0:性别与工作是否满意无关,根据表中数据,求得K2的观测值k8.5716.635,查表得P(K26.635)0.010.能在犯错误的概率不超过1%的前提下,认为性别与工作是否满意有关能力提升题组(建议用时:25分钟)

67、11已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得线性回归直线方程x,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa,则以下结论正确的是()A.b,a B.b,aC.a D.b,a解析由题意可知,b2,a2,.,a,选C.答案C12有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下非优秀统计成绩,得到如下所示的列联表:优秀非优秀总计甲班10b乙班c30合计已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是()A列联表中c的值为30,b的值为35B列联表中c的值为15,b的值为50C根据列联表中的

68、数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”D根据列联表中的数据,若按97.5%的可靠性要求,不能认为“成绩与班级有关系”解析由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c20,b45,选项A,B错误根据列联表中的数据,得到K26.65.024,因此有97.5%的把握认为“成绩与班级有关系”答案C13某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用22列联表计算得K2的观测值k3.918,经查对临界值表知P(K23.841)0.05.对此

69、,四名同学得出了以下的判断:p:在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”;q:若某人未使用该血清,那么他在一年中有95%的可能性得感冒;r:这种血清预防感冒的有效率为95%;s:这种血清预防感冒的有效率为5%.则下列结论中,真命题的序号是_p綈q;綈pq;(綈p綈q)(rs);(p綈r)(綈qs)解析k3.9183.841,在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”,即命题p正确,命题q,r,s均不正确对依次进行判断,可知正确答案14某中学研究性学习小组,为了研究高中学生的作文水平是否与爱看课外书有关系,在本校高三年级随机调查了50

70、名学生调查结果表明:在爱看课外书的25人中有18人作文水平好,另外7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另外19人作文水平一般(1)试根据以上数据完成以下22列联表,并运用独立性检验思想,指出有多大把握认为高中学生的作文水平与爱看课外书有关系;爱看课外书不爱看课外书总计作文水平好作文水平一般总计(2)将其中某5名爱看课外书且作文水平好的学生分别编号为1,2,3,4,5,某5名爱看课外书且作文水平一般的学生也分别编号为1,2,3,4,5,从这两组学生中各任选1人进行学习交流,求被选取的2名学生的编号之和为3的倍数或4的倍数的概率参考公式:K2,其中nabcd.参考数据:P(

71、K2k0)0.100.050.0250.0100.0050.001k02.7063.8415.0246.6357.87910.828解(1)22列联表如下:爱看课外书不爱看课外书总计作文水平好18624作文水平一般71926总计252550因为K211.53810.828,由表知P(K210.828)0.001,所以有99.9%的把握认为高中学生的作文水平与爱看课外书有关系(2)设“被选取的2名学生的编号之和为3的倍数”为事件A,“被选取的2名学生的编号之和为4的倍数”为事件B.则基本事件为123451(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)

72、(2,5)3(3,1)(3,2)(3,3)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,4)(4,5)5(5,1)(5,2)(5,3)(5,4)(5,5)共25个,因为事件A所包含的基本事件为(1,2),(1,5),(2,1),(2,4),(3,3),(4,2),(4,5),(5,1),(5,4),共9个,所以P(A);事件B所包含的基本事件为(1,3),(2,2),(3,1),(3,5),(4,4),(5,3),共6个,所以P(B).因为事件A、B互斥,所以P(AB)P(A)P(B),即被选取的2名学生的编号之和为3的倍数或4的倍数的概率为.阶段回扣练10统计与统计案例(建议用时

73、:45分钟)一、选择题1(2015石家庄调研)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查这种抽样方法是()A简单随机抽样法 B抽签法C随机数表法 D分层抽样法解析总体由差异明显的几部分组成、按比例抽样,为分层抽样答案D2下列变量之间的关系是函数关系的是()A已知二次函数yax2bxc,其中,a,c是已知常数,取b为自变量,因变量是这个函数的判别式b24acB光照时间和果树亩产量C降雪量和交通事故发生率D每亩施用肥料量和粮食亩产量解析由函数关系和相关关系的定义可知,中b24ac,因为a,c是已知常数,b为自变量,所

74、以给定一个b的值,就有唯一确定的与之对应,所以与b之间是一种确定的关系,是函数关系中两个变量之间的关系都是随机的、不确定的,所以不是函数关系答案A3已知x,y之间的数据如下表所示,则回归直线过点()x12345y1.21.82.53.23.8A.(0,0) B(2,1.8) C(3,2.5) D(4,3.2)解析由回归直线恒过样本中心求解,3,2.5,故回归直线过点(3,2.5)答案C4容量为20的样本数据,分组后的频数如下表:分组10,20)20,30)30,40)40,50)50,60)60,70)频数234542则样本数据落在区间10,40)的频率为()A0.35 B0.45 C0.55

75、 D0.65解析数据落在区间10,40)内的频数为9,样本容量为20,所求频率为0.45.答案B5(2015石家庄模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A101 B808C1 212 D2 012解析由题意知抽样比为,而四个社区一共抽取的驾驶员人数为12212543101,故有,解得N808.答案B6小波一星期的总开支分布如图(1)所示,一星期的食品开支如图(2)

76、所示,则小波一星期的鸡蛋开支占总开支的百分比为()A30% B10% C3% D不能确定解析由题图(2)可知小波一星期的食品开支共计300元,其中鸡蛋开支30元又由题图(1)知,一周的食品开支占总开支的30%,则可知一周总开支为1 000元,所以鸡蛋开支占总开支的百分比为100%3%.答案C7如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在30,35),35,40),40,45的上网人数呈现递减的等差数列分布,则年龄在35,40)的网民出现的频率为()A0.04 B0.06 C0.2 D0.3解析由频率分布直方图可知,年龄在20,25)的频率为0.01

77、50.05,25,30)的频率为0.0750.35,又年龄在30,35),35,40),40,45的上网人数的频率成递减的等差数列分布,所以年龄在35,40)的网民出现的频率为0.2.故选C.答案C8若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数为,方差为s2,则()A.5,s22 B.5,s22C.5,s22 D.5,s22解析由题意知,(x1x2x8)5,(x1)2(x2)2(x8)22,则(x1x2x85)5,s2(x1)2(x2)2(x8)202.答案A9在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他1

78、0个小长方形面积和的,且样本容量为160,则中间一组的频数为()A32 B0.2 C40 D0.25解析由频率分布直方图的性质,可设中间一组的频率为x,则x4x1,x0.2,故中间一组的频数为1600.232,选A.答案A10对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),(xn,yn),则下列说法中不正确的是()A由样本数据得到的回归方程x必过样本点的中心(,)B残差平方和越小的模型,拟合的效果越好C用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D若变量y和x之间的相关系数r0.936 2,则变量y与x之间具有线性相关关系解析R2的值越大,

79、说明残差平方和越小,也就是模型的拟合效果越好,故选C.答案C11已知数组(x1,y1),(x2,y2),(x10,y10)满足线性回归方程x,则“(x0,y0)满足线性回归方程x”是“x0,y0”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析x0,y0为这10组数据的平均值,根据公式计算线性回归方程x的以后,再根据 (,为样本平均值)求得.因此(,)一定满足线性回归方程,但满足线性回归方程的除了(,)外,可能还有其他样本点答案B12(2014江西卷)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则

80、与性别有关联的可能性最大的变量是() 表1 表2成绩性别不及格及格总计男61420女102232总计163652视力性别好差总计男41620女122032总计163652智商性别偏高正常总计男81220女82432总计163652 表3 表4阅读量性别丰富不丰富总计男14620女23032总计163652A成绩 B视力 C智商 D阅读量解析A中,a6,b14,c10,d22,ab20,cd32,ac16,bd36,n52,K2.B中,a4,b16,c12,d20,ab20,cd32,ac16,bd36,n52,K2.C中,a8,b12,c8,d24,ab20,cd32,ac16,bd36,n5

81、2,K2.D中,a14,b6,c2,d30,ab20,cd32,ac16,bd36,n52,K2.与性别有关联的可能性最大的变量是阅读量答案D二、填空题13(2015成都一诊)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为_解析设样本中男生人数为n,则有,解得n160.答案16014(2015南京、盐城模拟)某地区教育主管部门为了对该地区模拟考试成绩进行分析、随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在300,350)内的学生人数共有_

82、人解析由频率分布直方图可得成绩在300,350)的频率是1(0.0010.0010.0040.0050.003)5010.70.3,所以成绩在300,350)的学生人数是0.31 000300.答案30015.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是_解析当x4时,91,x7.879,所以在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关答案0.5%17(2013湖北卷改编)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:y与x负相关且 2.347x6.423;y与x负相关且 3.476x5.648;y与x正相关且 5.437x8.493;y与x正相关且 4.326x4.578.其中一定不正确的结论的序号是_解析中,回归方程中x的系数为正,不是负相关;方程中的x的系数为负,不是正相关,一定不正确答案

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3