1、高考资源网() 您身边的高考专家课时作业(二十五)1若logx42,则x的值为()A2B2C2 D.答案B2若ba2(a0且a1),则有()Alog2ba Blog2abClogba2 Dlogab2答案D3在对数式log(x1)(3x)中,实数x的取值范围应该是()A1x3 Bx1且x2Cx3 D1x3且x2答案D解析解得1x1)8若logx(2)1,则x的值为()A.2 B.2C.2或2 D2答案B9若f(10x)x,则f(3)等于()Alog310 Blg3C103 D310答案B1021log25的值等于()A2 B2C2 D1答案B11log3_答案312求下列各式的值(1)log1
2、515;(2)log0.41;(3)log981;(4)log2.56.25; (5)log7343; (6)log3243.答案(1)1(2)0(3)2(4)2(5)3(6)513求x的值(1)xlog4;(2)xlog9;(3)x71log75;(4)logx83;(5)logx4.答案(1)2(2)(3)(4)(5)14求值:(1)log84;(2)2log232.解析(1)设log84x,则8x4,即23x22,3x2,x,故log84.(2)alogaNN,2log233.2log2322log232234.15若log2log0.5(log2x)0,求x的值解析由条件知log0.5
3、(log2x)1log0.50.5,得log2xlog2,从而x.重点班选做题16求2log4123log9275log25的值 .解析原式4log49log925log2523.1若5lgx25,则x的值为_答案1002设集合A5,log2(a3),集合Ba,b,若AB2,则AB_答案1,2,5解析由AB2,知log2(a3)2,得a1,由此知b2.故AB1,2,53设xlog23,求的值解析22x122x.4已知6a8,试用a表示下列各式:(1)log68;(2)log62;(3)log26.解析(1)log68a.(2)由6a8,得6a23,即62,所以log62.(3)由62,得26,所以log26.5已知logablogba(a0且a1;b0且b1),求证:ab或a.证明令logablogbat,则atb,bta.(at)ta,则at2a,t21,t1.当t1时,ab;当t1时,a.所以ab或a.高考资源网版权所有,侵权必究!