ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:121.89KB ,
资源ID:40446      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-40446-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016届《新步步高》高考数学大一轮总复习(北师大版理科)配套题库:第5章 高考专题突破二 .docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016届《新步步高》高考数学大一轮总复习(北师大版理科)配套题库:第5章 高考专题突破二 .docx

1、高考专题突破二高考中的三角函数综合问题考点自测1已知向量(2,0),向量(2,2),向量(cos ,sin ),则向量与向量的夹角的取值范围是()A. B.C. D.答案D解析由题意,得:(2cos ,2sin ),所以点A的轨迹是圆(x2)2(y2)22,如图,当A位于使向量与圆相切时,向量与向量的夹角分别达到最大、最小值,故选D.2若函数f(x)(1tan x)cos x,0x,则f(x)的最大值为()A1 B2 C.1 D.2答案B解析依题意,得f(x)cos xsin x2sin(x),当0x时,x0.f(x)0在(,)恒成立,即4sin xa0在(,)恒成立,a(4sin x)min

2、.又y4sin x在(,)的最小值接近2,故a2.题型一三角函数的图像与性质例1已知函数f(x)sin(x)sin(x)2cos2,xR(其中0)(1)求函数f(x)的值域;(2)若函数yf(x)的图像与直线y1的两个相邻交点间的距离为,求函数yf(x)的单调增区间解(1)f(x)sin xcos xsin xcos x(cos x1)2(sin xcos x)12sin(x)1.由1sin(x)1,得32sin(x)11,所以函数f(x)的值域为3,1(2)由题设条件及三角函数图像和性质可知,yf(x)的周期为,所以,即2.所以f(x)2sin(2x)1,再由2k2x2k(kZ),解得kxk

3、(kZ)所以函数yf(x)的单调增区间为k,k(kZ)思维升华三角函数的图像与性质是高考考查的重点,通常先将三角函数化为yAsin(x)k的形式,然后将tx视为一个整体,结合ysin t的图像求解(2014四川)已知函数f(x)sin(3x)(1)求f(x)的单调递增区间;(2)若是第二象限角,f()cos()cos 2,求cos sin 的值解(1)因为函数ysin x的单调递增区间为2k,2k,kZ,由2k3x2k,kZ,得x,kZ.所以函数f(x)的单调递增区间为,kZ.(2)由已知,有sin()cos()(cos2sin2),所以sin coscos sin(cos cossin si

4、n)(cos2sin2),即sin cos (cos sin )2(sin cos )当sin cos 0时,由是第二象限角,知2k,kZ.此时,cos sin .当sin cos 0时,有(cos sin )2.由是第二象限角,知cos sin 0,此时cos sin .综上所述,cos sin 或.题型二三角函数和解三角形例2(2013重庆)在ABC中,内角A,B,C的对边分别是a,b,c,且a2b2abc2.(1)求C;(2)设cos Acos B,求tan 的值解(1)因为a2b2abc2,由余弦定理有cos C.又0C,故C.(2)由题意得.因此(tan sin Acos A)(ta

5、n sin Bcos B),tan2sin Asin Btan (sin Acos Bcos Asin B)cos Acos B,tan2sin Asin Btan sin(AB)cos Acos B.因为C,所以AB,所以sin(AB),因为cos(AB)cos Acos Bsin Asin B,即sin Asin B,解得sin Asin B.由得tan25tan 40,解得tan 1或tan 4.思维升华三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和差公式的灵活运用是解决此类问题的关键(2014重庆)在ABC中,内角A,B,C所对

6、的边分别为a,b,c,且abc8.(1)若a2,b,求cos C的值;(2)若sin Acos2sin Bcos22sin C,且ABC的面积Ssin C,求a和b的值解(1)由题意可知c8(ab).由余弦定理得cos C.(2)由sin Acos2sin Bcos22sin C,可得sin Asin B2sin C,化简得sin Asin Acos Bsin Bsin Bcos A4sin C.因为sin Acos Bcos Asin Bsin(AB)sin C,所以sin Asin B3sin C.由正弦定理可知ab3c.又因为abc8,故ab6.由于Sabsin Csin C,所以ab9

7、,从而a26a90,解得a3,b3.题型三三角函数和平面向量例3(2014山东)已知向量a(m,cos 2x),b(sin 2x,n), 函数f(x)ab,且yf(x)的图像过点(,)和点(,2)(1)求m,n的值;(2)将yf(x)的图像向左平移(0)个单位后得到函数yg(x)的图像,若yg(x)图像上各最高点到点(0,3)的距离的最小值为1,求yg(x)的单调递增区间解(1)由题意知f(x)abmsin 2xncos 2x.因为yf(x)的图像过点(,)和(,2),所以即解得(2)由(1)知f(x)sin 2xcos 2x2sin(2x)由题意知g(x)f(x)2sin(2x2)设yg(x

8、)的图像上符合题意的最高点为(x0,2),由题意知x11,所以x00,即到点(0,3)的距离为1的最高点为(0,2)将其代入yg(x)得sin(2)1,因为00,|)在同一个周期内,当x时,y取最大值1;当x时,y取最小值1.(1)求函数的解析式yf(x);(2)函数ysin x的图像经过怎样的变换可得到yf(x)的图像;(3)若函数f(x)满足方程f(x)a(0a1),求在0,2内的所有实数根之和解(1)T2(),3,又sin()1,2k,kZ.又|,得,函数的解析式为f(x)sin(3x)(2)ysin x的图像向右平移个单位,得到ysin(x)的图像,再由ysin(x)的图像上所有点的横

9、坐标变为原来的,纵坐标不变,得到ysin(3x)的图像(3)f(x)sin(3x)的最小正周期为,f(x)sin(3x)在0,2内恰有3个周期,sin(3x)a(0a1)在0,2内有6个实数根且x1x2.同理,x3x4,x5x6,故所有实数根之和为.3(2013四川)在ABC中,角A,B,C的对边分别为a,b,c,且2cos2cos Bsin(AB)sin Bcos(AC).(1)求cos A的值;(2)若a4,b5,求向量在方向上的射影解(1)由2cos2cos Bsin(AB)sin Bcos(AC),得cos(AB)1cos Bsin(AB)sin Bcos B,即cos(AB)cos

10、Bsin(AB)sin B.则cos(ABB),即cos A.(2)由cos A,0Ab,则AB,故B,根据余弦定理,有(4)252c225c,解得c1或c7(舍去)故向量在方向上的射影为|cos B.4.函数f(x)Asin(x)(xR,A0,0,0)的部分图像如图所示(1)求f(x)的解析式;(2)设g(x)f(x)2,求函数g(x)在x,上的最大值,并确定此时x的值解(1)由题图知A2,则4,.又f()2sin()2sin()0,sin()0,0,0,即,f(x)2sin(x)(2)由(1)可得f(x)2sin(x)2sin(x),g(x)f(x)2422cos(3x),x,3x,当3x

11、,即x时,g(x)max4.5已知向量a(cos ,sin ),b(cos x,sin x),c(sin x2sin ,cos x2cos ),其中0x.(1)若,求函数f(x)bc的最小值及相应x的值;(2)若a与b的夹角为,且ac,求tan 2的值解(1)b(cos x,sin x),c(sin x2sin ,cos x2cos ),f(x)bccos xsin x2cos xsin sin xcos x2sin xcos 2sin xcos x(sin xcos x)令tsin xcos x,则2sin xcos xt21,且1t.则yt2t12,1t,t时,ymin,此时sin xcos x,即sin,x,x,x,x.函数f(x)的最小值为,相应x的值为.(2)a与b的夹角为,cos cos cos xsin sin xcos(x)0x,0x,x.ac,cos (sin x2sin )sin (cos x2cos )0,sin(x)2sin 20,即sin2sin 20.sin 2cos 20,tan 2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3