ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:35.50KB ,
资源ID:39938      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-39938-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.1《函数的概念和图像--函数的单调性2》教案(苏教版必修1).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2.1《函数的概念和图像--函数的单调性2》教案(苏教版必修1).doc

1、高考资源网提供高考试题、高考模拟题,发布高考信息题本站投稿专用信箱:ks5u,来信请注明投稿,一经采纳,待遇从优第9课时 函数的单调性(二)教学目标:使学生理解增函数、减函数的概念,掌握判断某些函数增减性的方法,培养学生利用数学概念进行判断推理的能力和数形结合,辩证思维的能力;通过本节课的教学,启示学生养成细心观察,认真分析,严谨论证的良好思维习惯.教学重点:函数单调性的判断和证明.教学难点:函数单调性的判断和证明.教学过程:例1已知函数f(x)在其定义域M内为减函数,且f(x)0,则g(x)1在M内为增函数。证明:在定义域M内任取x 1、x 2,且x 1x 2,则: g(x 1)g(x 2)

2、11对于任意xM,有f(x)0 f(x1)f(x2)0f(x)在其定义域M内为减函数, f(x1)f(x2)g(x 1)g(x 2)0 即g(x 1)g(x 2)g(x)在M内为增函数例2函数f(x)在(0,)上是减函数,求f(a2a1)与f()的大小关系?解:f(x)在(0,)上是减函数a2a1(a)20f(a2a1)f()评述:体会“等价转化”思想的运用,注意解题时的层次分明和思路清晰.例3已知函数f(x)在区间(2,+)上单调递增,求a的取值范围。解:在区间(2,+)内任取x 1、x 2,使2x 1x 2,则: f(x 1)f(x 2) f(x 1)f(x 2) (2a1)(x1x2)0

3、 而x 1x 2必须2a10 即a例4已知函数f(x)x22axa21在区间(,1)上是减函数,求a的取值范围。解:顶点横坐标为a,且开口向上 a1例5写出函数f(x)的单调区间。解:tx22x30 x1或x3当x(,1时:x递增,t递减,f(x)递减当x3,+)时:x递增,t递增,f(x)递增当x(,1时,f(x)是减函数;当x3,+)时,f(x)是增函数.例6判断函数f(x)的增减情况。解:设tx24x,则t4且t0 y 当t4,0时,y递减;当t0,+)时,y递减.又当x0,4时,t4,0当x(,0)或x(4,+)时,t0,+)当x(,0)时,x递增,t递减,y递增当x0,2时,x递增,

4、t递减,y递增当x(2,4时,x递增,t递增,y递减当x(4,+)时,x递增,t递增,y递减当x(,0)0,2时,f(x)是增函数当x(2,4(4,+)时,f(x)是减函数例7已知f(x)的定义域为(0,),且在其定义域内为增函数,满足f(xy)f(x)f(y),f(2)1,试解不等式f(x)f(x2)3.解:由f(2)1及f(xy)f(x)f(y)可得3f(2)3f(2)f(2)f(2)f(4)f(2)f(8)f(x)f(x2)3 f(x)f(x2)3f(x2)f(8)f 8(x2)又函数f(x)在定义域(0,)上是增函数 即2x评述:(1)例7是利用函数的单调性解不等式的重要应用,这类问题

5、解决时要特别注意必须首先考虑定义域,进而结合函数单调性去求不等式的解集.(2)建议在教学中指导学生树立“定义域优先”的原则,即:在解题时必须时时考虑到.例8设f(x)定义在R+上,对于任意a、bR+,有f(ab)f(a)f(b)求证:(1)f(1)0;(2)f( )f(x);(3)若x(1,+)时,f(x)0,则f(x)在(1,+)上是减函数.证明:(1)令ab1,则:f(1)f(1)f(1) f(1)0(2)令ax,b,则:f(1)f(x) f( ) f( )f(x)(3)令1x 1x 2,则:f(x1)f(x2)f(x2)f( )f( )1x 1x 2 1 f( )0 即f(x1)f(x2) f(x)在(1,+)上是减函数.共3页第3页

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3