ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:239.58KB ,
资源ID:39762      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-39762-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016-2017学年高二数学人教A必修5学案:3.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016-2017学年高二数学人教A必修5学案:3.docx

1、第2课时基本不等式的应用学习目标1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题 知识链接1已知x,y都是正数,若xys(和为定值),那么xy有最大值还是最小值?如何求?答xy有最大值由基本不等式,得sxy2,所以xy,当xy时,积xy取得最大值.2已知x,y都是正数,若xyp(积为定值),那么xy有最大值还是最小值?如何求?答xy有最小值. 由基本不等式,得xy22.当xy时,xy取得最小值2.预习导引1用基本不等式求最值的结论(1)设x,y为正实数,若xys(和s为定值),则当xy时,积xy有最大值,且这个值为.(

2、2)设x,y为正实数,若xyp(积p为定值),则当xy时,和xy有最小值,且这个值为2.2基本不等式求最值的条件(1)x,y必须是正数;(2)求积xy的最大值时,应看和xy是否为定值;求和xy的最小值时,应看积xy是否为定值(3)等号成立的条件是否满足.要点一基本不等式与最值例1(1)若x0,求函数yx的最小值,并求此时x的值;(2)设0x2,求x的最小值;(4)已知x0,y0,且 1,求xy的最小值解(1)当x0时,x2 4,当且仅当x,即x24,x2时取等号函数yx(x0)在x2时取得最小值4.(2)0x0,y4x(32x)22x(32x)22.当且仅当2x32x,即x时,等号成立.函数y

3、4x(32x)(0x2,x20,xx222 26,当且仅当x2,即x4时,等号成立x的最小值为6.(4)法一x0,y0,1,xy(xy)1061016,当且仅当,又1,即x4,y12时,上式取等号故当x4,y12时,(xy)min16.法二由1,得(x1)(y9)9(定值)可知x1,y9,xy(x1)(y9)1021016,当且仅当x1y93,即x4,y12时上式取等号,故当x4,y12时,(xy)min16.规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考

4、虑等号成立的条件跟踪演练1(1)已知x0,求f(x)3x的最小值;(2)已知x0,y0,且2x8yxy,求xy的最小值解(1)x0,f(x)3x2 12,当且仅当3x,即x2时取等号f(x)的最小值为12.(2)x3,x30,y0,x80,y,xyxx(x8)102 1018.当且仅当x8,即x12时,等号成立xy的最小值是18.法二由2x8yxy0及x0,y0,得1.xy(xy)102 1018.当且仅当,即x2y12时等号成立xy的最小值是18.要点二基本不等式在实际问题中的应用例2(1)用篱笆围一个面积为100 m2的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多

5、少?(2)一段长为36 m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解(1)设矩形菜园的长为x m,宽为y m,则xy100,篱笆的长为2(xy) m.由,可得xy2,2(xy)40.等号当且仅当xy时成立,此时xy10.因此,这个矩形的长、宽都为10 m时,所用篱笆最短,最短篱笆为40 m;(2)设矩形菜园的长为x m,宽为y m,则2(xy)36,xy18,矩形菜园的面积为xy m2.由9,可得xy81,当且仅当xy,即xy9时,等号成立因此,这个矩形的长、宽都为9 m时,菜园的面积最大,最大面积为81 m2.规律方法利用基本不等式解决实际问题时

6、,一般是先建立关于目标量的函数关系,再利用基本不等式求解目标函数的最大(小)值及取最大(小)值的条件跟踪演练2某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?解设该厂每隔x天购买一次面粉,其购买量为6x吨由题意可知,面粉的保管等其他费用为36x6(x1)6(x2)619x(x1)设平均每天所支付的总费用为y1元,则y19x(x1)90061 8009x10 8092 10 80910 989(元),当且仅当9x,即x10时,等号成立该厂

7、每10天购买一次面粉,才能使平均每天所支付的总费用最少例3某国际化妆品生产企业为了占有更多的市场份额,拟在2012年英国伦敦奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3x与t1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2012年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完(1)将2012年的利润y(万元)表示为促销费t(万元)的函数(2)该企业2012年的促销费投入多少万元时,企

8、业的年利润最大?(注:利润销售收入生产成本促销费,生产成本固定费用生产费用)解(1)由题意可设3x,将t0,x1代入,得k2.x3.当年生产x万件时,年生产成本年生产费用固定费用,年生产成本为32x3323.当销售x(万件)时,年销售收入为150%t.由题意,生产x万件化妆品正好销完,由年利润年销售收入年生产成本促销费,得年利润y(t0)(2)y5050250242(万元),当且仅当,即t7时,ymax42,当促销费投入7万元时,企业的年利润最大规律方法 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答)跟踪演练3一批货物随17

9、列货车从A市以v千米/时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于2千米,那么这批货物全部运到B市,最快需要_小时答案8解析设这批货物从A市全部运到B市的时间为t,则t2 8(小时),当且仅当,即v100时等号成立,此时t8小时.1设0x,则函数yx(32x)的最大值是()A. B.C2 D.答案D解析0x0,yx(32x)2x22,当且仅当xx,即x时,取“”,函数yx(32x)的最大值为.2已知x,则f(x)有()A最大值 B最小值C最大值1 D最小值1答案D解析f(x)1.当且仅当x2,即x3时等号成立3将一根铁丝切割成三段做一个面积为2 m2、形状为直角

10、三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是()A6.5 m B6.8 mC7 m D7.2 m答案C解析设两直角边分别为a,b,直角三角形的框架的周长为l,则ab2,ab4,lab2426.828(m)要求够用且浪费最少,故选C.4已知a3,则a的最小值为_答案7解析a3,a30.aa33237,当且仅当a5时取等号a的最小值为7.1.用基本不等式求最值(1)利用基本不等式求最值要把握下列三个条件:“一正”各项为正数;“二定”“和”或“积”为定值;“三相等”等号一定能取到这三个条件缺一不可(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运

11、用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数yx(p0)的单调性求得函数的最值2求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答一、基础达标1已知x1,y1且lg xlg y4,则lg xlg y的最大值是()A4 B2 C1 D.答案A解析x1,y1,lg x0,lg y0,lg xlg y24,当且仅当lg xlg y2,即xy100时取等号2已知点P(x,y)在经过A(3,0),B(1,1)

12、两点的直线上,则2x4y的最小值为()A2 B4 C16 D不存在答案B解析点P(x,y)在直线AB上,x2y3.2x4y224.当且仅当2x4y,即x,y时,等号成立3函数ylog2 (x1)的最小值为()A3 B3 C4 D4答案B解析x5(x1)6268.当且仅当x2时,取“”log23,ymin3.4已知a0,b0,ab2,则y的最小值是()A. B4 C. D5答案C解析ab2,1.()()()2(当且仅当,即b2a时,“”成立),故y的最小值为.5周长为1的直角三角形面积的最大值为_答案解析设直角三角形的两条直角边边长分别为a、b,则1ab2,解得ab,当且仅当ab时取“”,所以直

13、角三角形面积S,即S的最大值为.6建造一个容积为8 m3,深为2 m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为_元答案1 760解析设水池的造价为y元,长方形底的一边长为x m,由于底面积为4 m2,所以另一边长为 m那么y120428048032048032021 760(元)当且仅当x2时等号成立,即底为边长为2 m的正方形时,水池的造价最低,为1 760元7设0x2,求函数y的最大值解0x2,03x20,y4,当且仅当3x83x,即x时,取等号当x时,y有最大值4.8某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设

14、备的维修费各年为第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增,问这种生产设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)?解设使用x年的年平均费用为y万元由已知,得y,即y1(xN*)由基本不等式知y12 3,当且仅当,即x10时取等号因此使用10年报废最合算,年平均费用为3万元二、能力提升9若xy是正数,则22的最小值是()A3 B. C4 D.答案C解析22x2y21124.当且仅当xy或xy时取等号10设正实数x,y,z满足x23xy4y2z0,则当取得最大值时,的最大值为()A0 B1 C. D3答案B解析由x23xy4y2z0,得zx23x

15、y4y2.所以1,当且仅当,即x2y时取等号,此时z2y2,max1.211,当y1时,取等号,故选B.11设x1,则函数y的最小值是_答案9解析x1,x10,设x1t0,则xt1,于是有yt5259,当且仅当t,即t2时取等号,此时x1.当x1时,函数y取得最小值9.12某建筑公司用8 000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4 000平方米的楼房经初步估计得知,如果将楼房建为x(x12)层,则每平方米的平均建筑费用为Q(x)3 00050x(单位:元)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用平均建

16、筑费用平均购地费用,平均购地费用)解设楼房每平方米的平均综合费用为f(x)元,依题意得f(x)Q(x)50x3 000(x12,xN),f(x)50x3 0002 3 0005 000(元)当且仅当50x,即x20时上式取“”因此,当x20时,f(x)取得最小值5 000(元)所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用最小值为5 000元三、探究与创新13如图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为

17、24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?解(1)设每间虎笼长x m,宽为y m,则由条件知:4x6y36,即2x3y18.设每间虎笼面积为S,则Sxy.法一由于2x3y22,218,得xy,即S,当且仅当2x3y时,等号成立由解得故每间虎笼长为4.5 m,宽为3 m时,可使面积最大法二由2x3y18,得x9y.x0,0y6,Sxyy(6y)y.0y0,S2.当且仅当6yy,即y3时,等号成立,此时x4.5.(2)由条件知Sxy24.设钢筋网总长为l,则l4x6y.法一2x3y2224,l4x6y2(2x3y)48,当且仅当2x3y时,等号成立由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长最小法二由xy24,得x.l4x6y6y66248.当且仅当y,即y4时,等号成立,此时x6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长最小

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3