1、专题三数列1等差数列an,bn的前n项和分别为Sn,Tn,且,则使得为整数的正整数n的个数是()A3个 B4个 C5个 D6个2已知数列an满足:a12,an1Sn(Sn1)20(nN*),其中Sn为an的前n项和若对任意的n均有(S11)(S21)(Sn1)kn恒成立,则k的最大整数值为()A2 B3 C4 D53设Sn是数列an的前n项和,且a11,(n1)an1(n1)Sn,则Sn_.4设数列an的前n项和为Sn,已知a11,且Sn4an(nN*),则数列an的通项公式是an_.5等差数列an的前n项和为Sn,a2a448,a528,Sn30n对一切nN*恒成立,则的取值范围为_6已知等
2、差数列an的公差d0,a10,其前n项和为Sn,且a22,S3,S4成等比数列(1)求数列an的通项公式;(2)若bn,数列bn的前n项和为Tn,求证:Tn2n.7(2018年湖北宜昌部分示范高中教学协作体期中联考)已知正项数列an的前n项和为Sn,且是1与an的等差中项(1)求数列an的通项公式;(2)设Tn为数列的前n项和,证明:Tn1(nN)*.8(2017年天津)已知an为等差数列,前n项和为Sn(nN*),bn是首项为2的等比数列,且公比大于0,b2b312,b3a42a1,S1111b4.(1)求an和bn的通项公式;(2)求数列a2nbn的前n项和(nN*)9(2019年浙江)设
3、等差数列an的前n项和为Sn,a34,a4S3,数列bn满足:对每一个nN*,Snbn,Sn1bn,Sn2bn成等比数列(1)求数列an,bn的通项公式;(2)记Cn,nN*, 证明:C1C2Cn1,故f(n)minf(1)3,kmax3,选B.3.解析:(n1)an1(n1)Sn,nan1Sn1nSn,n(Sn1Sn)Sn1nSn,2,nSn是首项为1,公比为2的等比数列,则nSn2n1,Sn.4.解析:当n2时,anSnSn1an1an,则anan1,即,数列是首项为1,公比为的等比数列,则n1,即an.5n,得n19,由函数f(x)x19的单调性及f(5)f(6)30知,当n5或n6时,
4、n19最小,为30,故30.6(1)解:由a10得an(n1)d,Sn,a22,S3,S4成等比数列,S(a22)S4,即(3d)2(d2)6d,整理得3d212d0,即d24d0,d0,d4,an(n1)d4(n1)4n4.(2)证明:由(1)可得Sn12n(n1),bn22,Tn2n2n1,Tn2n0,anan12,an是以1为首项,2为公差的等差数列,即an2n1.(2)证明:,Tn1,Tn0,TnT1,综上Tn0,解得q2.bn2n.由b3a42a1,可得3da18.由S1111b4,可得a15d16.联立,解得a11,d3.由此可得an3n2.an的通项公式为an3n2,bn的通项公
5、式为bn2n.(2)设数列a2nbn的前n项和为Tn,由a2n6n2,有Tn4210221623(6n2)2n,2Tn42210231624(6n8)2n(6n2)2n1,上述两式相减,得Tn4262262362n(6n2)2n14(6n2)2n1(3n4)2n216.Tn(3n4)2n216.数列a2nbn的前n项和为(3n4)2n216.9(1)解:由题意得解得则数列an的通项公式为an2n2.其前n项和Snn(n1)则n(n1)bn,n(n1)bn,(n1)(n2)bn成等比数列,即:n(n1)bn2n(n1)bn(n1)(n2)bn,n2(n1)22n(n1)bnbn(n1)(n1)(n2)(n1)(n2)bnn(n1)bnb,故bnn(n1)(2)证明:结合(1)中的通项公式可得:Cn2(),则C1C2Cn2(0)2()2()2 .10解:(1)设等差数列an的公差为d,等比数列的公比为q.依题意得解得故an4(n1)33n1,bn62n132n.an的通项公式为an3n1,bn的通项公式为bn32n.(2)a(c2n1)a(bn1)(32n1)(32n1)94n1.数列a(c1)的通项公式为a(c1)94n1.)iciaiai(ci1)i(c1)(94i1)(322n152n1)9n2722n152n1n12(nN*)