ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:390KB ,
资源ID:381065      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-381065-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016届《创新设计》数学一轮(文科)人教A版配套作业 第八章 立体几何 阶段回扣练8WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016届《创新设计》数学一轮(文科)人教A版配套作业 第八章 立体几何 阶段回扣练8WORD版含解析.doc

1、阶段回扣练8立体几何(建议用时:90分钟)一、选择题1(2014福建省质量检查)某几何体的俯视图是正方形,则该几何体不可能是()A三棱柱B四棱柱C圆柱D圆锥解析依题意,当一个几何体的俯视图是正方形时,该几何体不可能是圆锥,故选D.答案D2(2015杭州质量检测)设直线l平面,直线m平面()A若m,则lmB若,则lmC若lm,则D若,则lm解析A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的与也可能相交;D中l与m也可能异面,也可能相交,故选B.答案B3.如图是一个无盖的正方体盒子展开后的平面图,A,B,C是展开图上的三点,则在正方体盒子中,ABC的值为()A30B4

2、5C60D90解析还原为正方体,如图所示,连接AB,BC,AC,可得ABC是正三角形,则ABC60.答案C4(2014甘肃诊断)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为()解析由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得ABBDAD2,当BC平面ABD时,BC2,ABD的边AB上的高为,只有B选项符合,当BC不垂直平面ABD时,没有符合条件的选项,故选B.答案B5(2014广州综合测试)一个几何体的三视图如图所示,则该几何体的体积为()A2B4C6D12解析依题意,题中的几何体是半个圆柱,因此其体积等于2236.答案C6(20

3、15济南模拟)已知直线m,n不重合,平面,不重合,下列命题正确的是()A若m,n,m,n,则B若m,n,则mnC若,m,n,则mnD若m,n,则mn解析由面面平行的判定定理可知A中需增加条件m,n相交才正确,所以A错误;若m,n,则m,n平行或异面,B错误;若,m,n,则m,n平行、相交、异面都有可能,C错误;由直线与平面垂直的定义可知D正确,故选D.答案D7(2014太原模拟)一个空间几何体的三视图如图所示,则该几何体的表面积为()A48B328C488D80解析由三视图可得该几何体是一个侧放的直四棱柱,该四棱柱的底面是上底、下底、高分别为2,4,4,腰长为的等腰梯形,所以两个底面面积和为2

4、(24)424,侧棱长为4,所以侧面积为(242)4248,表面积为24248488,故选C.答案C8(2015银川质量检测)如图,O为正方体ABCDA1B1C1D1的体对角线A1C和AC1的交点,E为棱BB1的中点,则空间四边形OEC1D1在正方体各面上的正投影不可能是()解析依题意,注意到题中的空间四边形OEC1D1在平面CC1D1D、平面DD1A1A、平面ABCD上的正投影图形分别是选项B,C,D,故选A.答案A9已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB3,AC4,ABAC,AA112,则球O的半径为()A.B2C.D3解析如图,由球心作平面ABC的垂线,则垂足为

5、BC的中点M.又AMBC,OMAA16,所以球O的半径ROA.答案C10(2015东北三省四市联考)若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为()A.BCD解析设圆柱的底面半径为r,高为h,则,则h2r,则S侧2rh4r2,S全4r22r2,故圆柱的侧面积与全面积之比为,故选B.答案B二、填空题11.如图所示,在边长为5的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,则圆锥的全面积S_.解析设圆锥的母线长为l,底面半径为r,由已知条件得,解得r,l4,Srlr210.答案1012四棱

6、锥PABCD的顶点P在底面ABCD上的投影恰好是点A,其正视图与侧视图都是腰长为a的等腰直角三角形则在四棱锥PABCD的任意两个顶点的连线中,互相垂直的异面直线共有_对解析四棱锥PABCD的直观图如图所示,结合图形可知,满足题中要求的有PABC,PACD,ABPD,BDPA,BDPC,ADPB,共6对答案613在三棱锥PABC中,PA底面ABC,PA3,底面ABC是边长为2的正三角形,则三棱锥PABC的体积等于_解析PA底面ABC,PA为三棱锥PABC的高,且PA3.底面ABC为正三角形且边长为2,底面面积为22sin 60,VPABC3.答案14已知H是球O的直径AB上一点,AHHB12,A

7、B平面,H为垂足,截球O所得截面的面积为,则球O的表面积为_解析如图,设截面小圆的半径为r,球的半径为R,因为AHHB12,所以OHR.由勾股定理,有R2r2OH2,又由题意得r2,则r1,故R212,即R2.由球的表面积公式,得S4R2.答案15一个盛满水的三棱锥容器SABC,不久发现三条侧棱上各有一个小洞D,E,F,且SDDASEEBCFFS21,若仍用这个容器盛水,则最多可盛原来水的_倍解析设点F到平面SDE的距离为h1,点C到平面SAB的距离为h2,当平面EFD处于水平位置时,容器盛水最多.故最多可盛原来水的1.答案三、解答题16(2014陕西卷)四面体ABCD及其三视图如图所示,平行

8、于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形(1)解由该四面体的三视图可知,BDDC,BDAD,ADDC,BDDC2,AD1,AD平面BDC,四面体ABCD的体积V221.(2)证明BC平面EFGH,平面EFGH平面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,FGEH.同理,EFAD,HGAD,EFHG,四边形EFGH是平行四边形又AD平面BDC,ADBC,EFFG,四边形EFGH是矩形17(2015济南一模)在如图的多面体中,AE底面BEFC,ADEFBC,BEADEFBC,G是B

9、C的中点求证:(1)AB平面DEG;(2)EG平面BDF.证明(1)ADEF,EFBC,ADBC.又BC2AD,G是BC的中点,AD綉BG,四边形ADGB是平行四边形,ABDG.AB平面DEG,DG平面DEG,AB平面DEG. (2)连接GF,四边形ADFE是矩形,DFAE,AE底面BEFC,DF平面BCFE,EG平面BCFE,DFEG.EF綉BG,EFBE,四边形BGFE为菱形,BFEG,又BFDFF,BF平面BFD,DF平面BFD,EG平面BDF.18. (2015青岛质量检测)如图几何体中,四边形ABCD为矩形,AB3BC6,BFCFAEDE2,EF4,EFAB,G为FC的中点,M为线段

10、CD上的一点,且CM2.(1)证明:AF平面BDG;(2)证明:平面BGM平面BFC.证明(1)连接AC交BD于O点,则O为AC的中点,连接OG.点G为FC的中点,OG为AFC的中位线,OGAF.AF平面BDG,OG平面BDG,AF平面BDG.(2)连接FM.BFCFBC2,G为CF的中点,BGCF.CM2,DM4.EFAB,四边形ABCD为矩形,EFDM,又EFDM4,四边形EFMD为平行四边形FMED2,FCM为正三角形,MGCF.MGBGG,CF平面BGM.CF平面BFC,平面BGM平面BFC.19. (2014重庆卷)如图,在四棱锥PABCD中,底面是以O为中心的菱形,PO底面ABCD

11、,AB2,BAD,M为BC上一点,且BM.(1)证明:BC平面POM;(2)若MPAP,求四棱锥PABMO的体积(1)证明如图,连接OB,因为ABCD为菱形,O为菱形的中心,所以AOOB.因为BAD,所以OBABsinOAB2sin1,又因为BM,且OBM,所以在OBM中,OM2OB2BM22OBBMcosOBM12221cos.所以OB2OM2BM2,故OMBM.又PO底面ABCD,所以POBC.从而BC与平面POM内两条相交直线OM,PO都垂直,所以BC平面POM.(2)解由(1)可得,OAABcosOAB2cos.设POa,由PO底面ABCD知,POA为直角三角形,故PA2PO2OA2a23.又POM也是直角三角形,故PM2PO2OM2a2.连接AM,在ABM中,AM2AB2BM22ABBMcosABM22222cos.由于MPAP,故APM为直角三角形,则PA2PM2AM2,即a23a2,得a或a(舍去),即PO.此时S四边形ABMOSAOBSOMBAOOBBMOM1.所以VPABMOS四边形ABMOPO.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3