收藏 分享(赏)

[原创]2011届高考数学总复习测评课件50.ppt

上传人:高**** 文档编号:379952 上传时间:2024-05-27 格式:PPT 页数:12 大小:199KB
下载 相关 举报
[原创]2011届高考数学总复习测评课件50.ppt_第1页
第1页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第2页
第2页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第3页
第3页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第4页
第4页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第5页
第5页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第6页
第6页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第7页
第7页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第8页
第8页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第9页
第9页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第10页
第10页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第11页
第11页 / 共12页
[原创]2011届高考数学总复习测评课件50.ppt_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第六节 空间直角坐标系基础梳理1.空间直角坐标系及有关概念(1)空间直角坐标系:从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,就建立了空间直角坐标系O-xyz,其中点O叫做 ,x轴、y轴、z轴叫做 ,这三条坐标轴中每两条确定一个 ,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系 在空间直角坐标系中,让右手拇指指向 的正方向,食指指向 的正方向,若中指指向 的正方向,则称这个坐标系为右手直角坐标系.坐标原点坐标轴坐标平面x轴 y轴 z轴(3)空间直角坐标系中的坐标 空间任意一点A的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点A的 ,记作 .

2、2.空间中两点间的距离公式 空间中的两点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离 ,特别地,空间任一点P(x,y,z)与原点O的距离 .21221221221)z(z)y(y)x(xPP222zyxOP坐标A(x,y,z)典例分析题型一 空间中点的坐标的确定【例1】设正四棱锥S-P1P2P3P4的所有棱长均为a,建立适当的空间直角坐标系,求点S、P1、P2、P3和P4的坐标.分析 建立适当的空间直角坐标系,以各点的坐标表示简单方便为宜.解 正四棱锥S-P1P2P3P4如图所示,其中O为底面正方形的中心,P1P2Oy轴,P1P4Ox轴,SO在Oz轴上.d(P1,P2)=a,而

3、P1、P2、P3、P4均在xOy平面上,在xOy平面内,P3与P1关于原点O对称,0).2a,2a(P,0),2a,2a(P21P4与P2关于原点O对称,又d(S,P1)=a,d(O,P1)=,在RtSOP1中,d(S,O)=,S(0,0,).学后反思 (1)建立适当的空间直角坐标系,必须牢牢抓住相交于同一点的两两垂直的三条直线,如底面是矩形的直四棱柱,以底面其中一个顶点为原点建系;底面是菱形的直四棱柱,以对角线的交点为原点建系.本例是正四棱锥,以底面中心为原点建系.(2)要尽量把空间点建在坐标轴上,或某一个坐标平面内,使其坐标书写简单、方便,便于运算.,0).2a,2a(P,0),2a,2a

4、(P43a22a222aa22a22举一反三 1.如图,长方体OABCOABC中,OA=3,OC=4,OO=3,AC与BO相交于点P,则点C,B,P的坐标分别为 ,.答案:(0,4,0)(3,4,3)(,2,3)32题型二 空间中点的对称问题【例2】已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),求顶点D的坐标.解 平行四边形对角线互相平分,AC的中点即为BD的中点.设D(x,y,z),又AC的中点O(,4,-1),则 x=5,y=13,z=-3.故D(5,13,-3).分析 本题考查空间中点的坐标的计算公式.学后反思 注意分清线段的端点与中点.27,2z

5、11,2y5,422x272.已知点C为线段AB的中点,且A(1,0,-1),C(2,2,-3).求点B的坐标.举一反三解析:设B(x,y,z),则 ,x=3,y=4,z=-5,B(3,4,-5).2z13,2y0,22x12题型三 空间中两点的距离公式【例3】(14分)正方形ABCD,ABEF的边长都是1,而且平面ABCD与平面ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0a ).(1)求MN的长度;(2)当a为何值时,MN的长度最短?2分析 建立恰当的空间直角坐标系,利用空间两点间的距离公式求解.解 (1)平面ABCD平面ABEF,平面ABCD平面ABEF=AB

6、,ABBE,BE平面ABCD.4 AB,BC,BE两两垂直,故以B为原点,以BA,BE,BC所在直线分别为x轴,y轴和z轴,建立如图所示的空间直角坐标系.7 则 ,.10 .12 (2)由(1)可知当a=时,|MN|最短为 .14 22,0,122Maa22,022Naa222222220102222212122MNaaaaaaa 2222学后反思 考虑到所给几何图形中出现了两两垂直的三条直线,所以可以以此建立空间直角坐标系,通过点的坐标,利用两点间的距离公式求得线段MN的长度,并利用二次函数的最值,求出线段MN的长度的最小值,体现了空间直角坐标系这一重要工具的应用.3.空间坐标系中,A(1-

7、t,1-t,t),B(2,t,t),求AB的最小值.举一反三解析:当t=时,等号成立,即AB的最小值为 .,55359)515(t22t5t1)(2tt)(1AB222251553考点演练10.已知A(1,a,-5),B(2a,-7,-2),aR,求|AB|的最小值.解析:当a=-1时,2222221725510595154ABaaaaa min3 6AB11.如图,正方体边长为1,以正方体的三条棱所在的直线为坐标轴,建立空间直角坐标系O xyz,点P在正方体的对角线AB上,点Q在正方体的棱CD上.当点P为对角线AB的中点,点Q在棱CD上运动时,求PQ的最小值.2PQ解析:由题意知,点P的坐标为 设Q的坐标为(0,1,z),其中0z1,则 所以当z=时,有最小值 ,从而PQ有最小值 .1 1 1,2 2 222222111012221122PQzz12122212.如图所示,已知PA平面ABCD,ABCD为矩形,M、N分别是AB、PC的中点.求证:MNAB.证明:以A为原点建立如图所示的空间直角坐标系Axyz.设B(a,0,0),D(0,b,0),C(a,b,0),点P(0,0,c),则点M(,0,0),则 MNAB.2a222214ANabc,2 2 2a b cN 222ANAMMN

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3