ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:416.50KB ,
资源ID:378367      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-378367-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([原创]2011届高考数学总复习测评课件16.ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

[原创]2011届高考数学总复习测评课件16.ppt

1、第三节 线性回归方程基础梳理1.两个变量的线性相关 能用直线bx+a近似地表示的相关关系叫做线性相关关系.一般地,设有n对观察数据如下:当a、b使Q=(y1-bx1-a)2+(y2-bx2-a)2+(yn-bxn-a)2取得最小值时,方程=bx+a为拟合这n对数据的线性回归方程.x x1 x2 xn y y1 y2 yn 2.线性回归方程(1)最小二乘法 求回归直线使得样本数据的点到回归直线的 最小 的方法叫做最小二乘法.ba距离的平方和(2)线性回归方程 方程=bx+a是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),(xn,yn)的线性回归方程,其中a,b是待定参数.n

2、niii ii 1i 1nn222iii 1i 1(xx)(yy)x ynxy(xx)xnxybx典例分析题型一 相关关系的判断【例1】下列两个变量之间的关系是相关关系的是-.降雪量与交通事故发生率;单位面积产量为常数时,土地面积与产量;日照时间与水稻的亩产量;电压一定时,电流与电阻.分析 函数关系和相关关系都是指两个变量之间的关系,函数关系是两变量之间的一种确定关系,而相关关系是一种不确定关系.解 中两个变量间的关系都是确定的,所以是函数关系;中两个变量是相关关系,降雪量相同的不同地段,交通事故的发生率也不同;中的两个变量是相关关系,对于日照时间一定的水稻,仍可以有不同的亩产.学后反思 判断

3、两个变量间的关系是函数关系还是相关关系,关键是判断两个变量间的关系是否是确定的,若确定,则是函数关系;若不确定,再判断是否线性相关.判断两个变量之间有无线性相关关系,最简便可行的方法是绘制散点图.散点图是由数据点分布构成的,是分析研究两个变量相关的重要手段,如果发现点的分布从整体上看大致在一条直线附近,那么这两变量是线性相关的.典例分析题型一 相关关系的判断【例1】下列两个变量之间的关系是相关关系的是-.降雪量与交通事故发生率;单位面积产量为常数时,土地面积与产量;日照时间与水稻的亩产量;电压一定时,电流与电阻.分析 函数关系和相关关系都是指两个变量之间的关系,函数关系是两变量之间的一种确定关

4、系,而相关关系是一种不确定关系.解 中两个变量间的关系都是确定的,所以是函数关系;中两个变量是相关关系,降雪量相同的不同地段,交通事故的发生率也不同;中的两个变量是相关关系,对于日照时间一定的水稻,仍可以有不同的亩产.学后反思 判断两个变量间的关系是函数关系还是相关关系,关键是判断两个变量间的关系是否是确定的,若确定,则是函数关系;若不确定,再判断是否线性相关.判断两个变量之间有无线性相关关系,最简便可行的方法是绘制散点图.散点图是由数据点分布构成的,是分析研究两个变量相关的重要手段,如果发现点的分布从整体上看大致在一条直线附近,那么这两变量是线性相关的.1.有五组变量:汽车的重量和汽车每消耗

5、1升汽油所行驶的平均路程;平均日学习时间和平均学习成绩;某人每日吸烟量和其身体健康情况;正方形的边长和面积;汽车的重量和百公里耗油量.其中两个变量成正相关的是 .举一反三解析:由相关关系的有关概念可知正相关,为负相关,为函数关系.答案:【例2】下面是水稻产量与施化肥量的一组观测数据:施化肥量:15 20 25 30 35 40 45 水稻产量:320 330 360 410 460 470 480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?分析 判断变量间是否是线性相关,一种常用的简便可行的方法就是作散点图.解

6、 (1)散点图如下:(2)从图中可以发现,当施化肥量由小到大变化时,水稻产量由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增长.学后反思 散点图是由大量数据点分布构成的,是定义在具有相关关系的两个变量基础之上的.对于性质不明确的两组数据可先作散点图,直观地分析它们有无关系及关系的密切程度.2.下表是某地的年降雨量(mm)与年平均气温()的数据资料,两者是线性相关关系吗?求线性回归方程有意义吗?举一反三年平均气 温()12.51 12.84 12.84 13.69 13.33 12.74 13.05 年降

7、雨量(mm)748 542 507 813 574 701 432 解析:以x轴为年平均气温,y轴为年降雨量,可得相应的散点图如图所示.因为图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没必要用回归直线进行拟合.如果用公式求线性回归方程也是没有意义的.题型二 求线性回归方程【例3】在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:由资料看y对x呈线性相关,试求线性回归方程.温度(x)0 10 20 50 70 溶解度(y)66.7 76.0 85.0 112.3 128.0 解 a=93.6-0.880 93067.173.所求线性回归方程为=0.88

8、0 9x+67.173.30,x 93.65128.0112.385.076.066.7y9.0.880 x5xyx5yxb51i22i51iiixby 学后反思 因为y对x呈线性相关关系,所以可以用线性相关的方法解决问题.(1)画出散点图后,即可观察两个变量是否相关.若知道x与y呈线性相关关系,则无需进行相关性检验,否则应进行相关性检验.如果它们之间相关关系不显著,即使求出回归直线也毫无意义.(2)利用公式:来计算回归系数,有时常制表对应出xiyi,xi2,以便于求和.xbya,xnxyxnyxbn1i22in1iii举一反三 3.某中学期中考试后,对成绩进行分析,从某班中选出5名学生的总成

9、绩和外语成绩如下表:则外语成绩对总成绩的线性回归方程是 .学科 1 2 3 4 5 总成绩(x)482 383 421 364 362 外语成绩(y)78 65 71 64 61 学生 解析:设回归直线方程是=bx+a,将以上数据代入 bni ii 1n22ii 1x ynxyxnxaybx解得 b0.132,a14.683,所以线性回归方程为 =0.132x+14.683.y答案:=0.132x+14.683 y题型三 利用线性回归方程对总体进行估计【例4】(14分)下表是几个国家近年来的男性与女性的平均寿命(单位:岁)情况:国家 男性平均寿(x)女性平均寿命(y)调查年号 中国 70 73

10、 2000 韩国 73.4 80.4 2002 马来西亚 71 75.5 2003 美国 78.1 82.6 2005 法国 75.5 82 2001 日本 78.6 85.6 2004(1)如果男性与女性的平均寿命近似成线性关系,求它们之间的线性回归方程;(2)科学家预测,到2075年,加拿大男性平均寿命为87岁.现请你预测,到2075年,加拿大女性的平均寿命(精确到0.1岁).分析 (1)本题若没有告诉我们y与x间是呈线性相关的,应首先进行相关性检验.如果两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出线性回归方程也是没有意义的,而且其估计与预测也是不可信的.(2)求线

11、性回归方程的关键:计算出 、.xyn1i2ixn1iiiyx解 列表如下:i 1 2 3 4 5 6 xi 70 73.4 71 78.1 75.5 78.6 yi 73 80.4 75.5 82.6 82 85.6 Xiyi 5110 5901.36 5360.5 6451.06 6191 6728.16 可得 =35 742.08,=33 306.38,74.43,=79.85,5 539.82.8(1)设所求线性回归方程为=bx+a,则 .10 即所求线性回归方程为 =1.23x-11.7.61iiiyx61i2ixxy2xy -11.7.xbya1.23,67.4682.667x6xy

12、x6yxb61i22i61iiiy(2)当x=87时,=1.2387-11.7=95.3195.312 所以可预测,到2075年,加拿大女性的平均寿命为95.3岁.14 学后反思 通常在尚未断定两个变量之间是否具有线性相关关系的情况下,应先进行相关性检验;在确认具有线性相关关系后,再求其线性回归方程.一般步骤为:作出散点图,判断是否线性相关;若是,则用公式求出a、b,写出线性回归方程;据方程进行估计.y4.某城区为研究城镇居民月家庭人均生活费支出和月人均收入的相关关系,随机抽取10户进行调查,其结果如下:举一反三月人均收 入x(元)300 390 420 504 570 700 760 800

13、 850 1080 月人均生 活费y(元)255 324 330 345 450 520 580 650 700 750 利用上述资料:(1)画出散点图;(2)如果变量x与y之间具有线性相关关系,求出回归直线方程;(3)测算人均收入为280元时,人均生活费支出应为多少元?解析:(1)散点图如图所示.(2)=637.4,=490.4,a=-b =490.4-0.707 61637.439.369 39,=0.707 61x+39.369 39.(3)把x=280代入,得y237.5元,测算人均收入为280元时,人均生活费支出应为237.5元.xy61,0.707x10 xyx10yxb101i2

14、2i101iiiyxy考点演练10.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算得 ,求其线性回归方程.8152iix81228iiy821478iix811849iiix y解析:代入公式得 ,=11.47+2.62x.8 184952 2882.628 47852 52b11.47aybxy11.要分析学生初中升学考试的数学成绩对高一年级数学学习有什么影响,在高一年级学生中随机抽选10名学生,记录他们入学的数学成绩和高一年级期末数学考试成绩如下表:学生编号 入学成绩(x)高一期末考试成绩(y)1 63 65 2 67 78 3 45 52

15、 4 88 82 5 81 92 6 71 89 7 52 73 8 99 98 9 58 56 10 76 75(1)画出散点图;(2)求出线性回归方程;(3)若某学生入学的数学成绩为80分,试估计他高一期末数学考试成绩(保留两位有效数字).解析:(1)入学成绩(x)与高一期末考试成绩(y)两组变量的散点图如图.从散点图看,这两组变量具有线性相关关系;(2)设线性回归方程为 =a+bx,在两组变量具有显著的线性相关关系的情况下,因此所求的线性回归方程是 =22.410 80+0.765 56x.y0.76556,xnxyxnyxbn1i22in1iiiy80.22.410 xbya(3)若某

16、学生入学的数学成绩为80分,代入式可求得84,即这个学生高一期末数学考试成绩的预测值为84分.12.某产品的广告支出x与销售收入y之间有下表所对应的数据.(1)画出表中数据的散点图;(2)求出y对x的回归直线方程.广告支出x(万元)1 2 3 4 销售收入y(万元)12 28 42 56 解析:(1)散点图如下:(2)观察散点图可知各点大致分布在一条直线附近,列出下面表格,以备计算a、b.序号 x Y xy 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 4 4 56 16 224 合计 10 138 30 418 2x34.5y 于是 ,代入公式,得 ,故y对x的回归直线方程为 ,其中回归系数b=14.6,它的意义是:广告支出每增加1万元,销售收入y平均增加14.6万元.2.5x 42130iix41418iiix y414222144184 2.5 34.514.63042.54iiiiix yxybxx 34.5 14.6 2.52aybx 14.62yx

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3