ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:328.10KB ,
资源ID:37769      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-37769-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019-2020学年物理教科版选修3-1检测:第三章检测(B) WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019-2020学年物理教科版选修3-1检测:第三章检测(B) WORD版含解析.docx

1、第三章检测(B)(时间90分钟,满分100分)一、选择题(本题包含10小题,每小题4分,共40分.在每小题给出的四个选项中,16题只有一个选项符合题目要求,710题有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法正确的是()A.磁感应强度是矢量,它的方向与通电导线在磁场中所受磁场力的方向相同B.磁感应强度的单位是特斯拉,1 T=1 N/(Am2)C.磁通量的大小等于穿过线圈单位面积的磁感线条数D.磁通量的单位是韦伯,1 Wb=1 Tm2解析:磁感应强度的方向与通电导线在磁场中所受磁场力的方向是垂直的,故选项A错误.由F=BIL得B=FIL,单位关系1

2、T=1 N/(Am),故选项B错误.磁通量的大小等于穿过某一面积的磁感线条数,选项C错误.由=BS知单位关系1 Wb=1 Tm2是正确的,选项D正确.答案:D2.如图所示,真空中两点电荷+q和-q以共同的角速度绕轴OO匀速运动,P点距+q近,则P点磁感应强度的方向为() A.沿OO向上B.沿OO向下C.从+q指向-qD.磁感应强度为0解析:电荷的定向移动形成电流,当两个点电荷匀速转动时,相当于产生两个环形电流,由I=qt知两个电荷产生的等效电流大小相等,+q产生的电流形成的磁场在P点方向向上,-q产生的电流形成的磁场在P点方向向下,但由于P点离+q近,+q形成的电流在P点产生的磁感应强度大,因

3、此P点磁感应强度方向应沿OO向上,故选项A正确.答案:A3.如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd方向射入磁场区域,当速度大小为vb时,从b点离开磁场,在磁场中运动的时间为tb;当速度大小为vc时,从c点离开磁场,在磁场中运动的时间为tc,不计粒子重力.则()A.vbvc=12,tbtc=21B.vbvc=21,tbtc=12C.vbvc=21,tbtc=21D.vbvc=12,tbtc=12解析:设正六边形边长为l.对于粒子从f点沿fd方向射入磁场区域,从b点离开磁场的过程,粒子做匀速圆周运动的圆心为a点,则速度偏转角即圆弧所对圆心角为b=12

4、0,半径rb=l;对于粒子速度大小为vc从c点离开磁场的过程,圆弧对应弦切角为60,则速度偏转角即圆弧所对圆心角为c=60,半径rc=2l;由牛顿第二定律,qvB=mv2r,得v=qBrm,由于rbrc=12,所以vbvc=12.由T=2mqB,得=2T=qBm,可知两种情况中粒子角速度相等.由t=,且bc=21,所以tbtc=21,故选A.答案:A4.已知通电长直导线产生的磁场中某点的磁感应强度满足B=kIr(其中k为比例系数,I为电流,r为该点到直导线的距离).现有四根平行的通电长直导线,其横截面积恰好在一个边长为L的正方形的四个顶点上,电流方向如图所示,其中A、C导线中的电流大小为I1,

5、B、D导线中的电流大小为I2.已知A导线所受的磁场力恰好为零,则下列说法不正确的是()A.电流的大小关系为I1=2I2B.四根导线所受的磁场力为零C.正方形中心O处的磁感应强度为零D.若移走A导线,则中心O处的磁场将沿OB方向解析:导线B、C、D在导线A处的磁场如图甲所示,根据题意A导线的磁场力为零,则A处的合磁场为零,即2kI2L=kI12L,则I1=2I2,故选项A正确;同理将各点的磁场都画出,可以判断B、D导线处的合磁场不为零,故磁场力不为零,故选项B错误;将各导线在O点的磁场画出,如图乙所示,由于A、C导线电流相等而且距离O点距离相等,则BA=BC,同理BB=BD,即正方形中心O处的磁

6、感应强度为零,故选项C正确;若移走A导线,则磁场BA不存在,由于BB=BD,则此时在O点的磁场只剩下导线C的磁场,而且导线C点磁场方向沿OB方向,即中心O处的磁场将沿OB方向,故选项D正确.甲乙答案:B5.如图所示,在匀强电场和匀强磁场共存的区域内,电场的电场强度为E,方向竖直向下,磁场的磁感应强度为B,方向垂直于纸面向里,一质量为m的带电质点,在场区内的一竖直平面内做匀速圆周运动,则可判断该带电质点()A.带有电荷量为mgE的正电荷B.沿圆周逆时针运动C.运动的角速度为BgED.运动的速率为EB解析:带电质点在竖直平面内做匀速圆周运动,有mg=qE,求得电荷量q=mgE,根据电场强度方向和电

7、场力方向判断出质点带负电,选项A错误.由左手定则可判断质点沿顺时针方向运动,选项B错误.由qvB=mv得=qBm=mgBEm=gBE,选项C正确.在速度选择器中才有v=EB,故选项D错误.答案:C6.如图所示,平行金属板A、B水平正对放置,分别带等量异号电荷.一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.若微粒带正电荷,则A板一定带正电荷B.微粒从M点运动到N点电势能一定增加C.微粒从M点运动到N点动能一定增加D.微粒从M点运动到N点机械能一定增加解析:由于不知道重力和电场力大小关系,所以不能确定电场力方向,不能确定微粒电性,也不能确定电场力对微粒做功的

8、正负,则选项A、B、D错误;根据微粒偏转方向可知微粒所受合外力一定是竖直向下,则合外力对微粒做正功,由动能定理知微粒的动能一定增加,选项C正确.答案:C7.如图所示,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反,下列说法正确的是()A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为113D.L1、L2和L3单位长度所受的磁场作用力大小之比为331解析:利用同向电流相互吸引,异向电流相互排斥,受力分析如图所示.设任意两导线间

9、作用力大小为F,则L1受合力F1=2Fcos 60=F,方向与L2、L3所在平面平行;L2受合力F2=2Fcos 60=F,方向与L1、L3所在平面平行;L3所受合力F3=2Fcos 30=3F,方向与L1、L2所在平面垂直.故选项B、C正确.答案:BC8.如图所示,连接平行金属板P1和P2(板面垂直于纸面)的导线的一部分CD和另一连接电池的回路的一部分GH平行,CD和GH均在纸平面内,金属板置于磁场中,磁场方向垂直于纸面向里,当一束等离子体射入两金属板之间时,CD段导线将受到力的作用,下列判断正确的是()A.当等离子体从右侧射入时,CD受力的方向背离GHB.当等离子体从右侧射入时,CD受力的

10、方向指向GHC.当等离子体从左侧射入时,CD受力的方向背离GHD.当等离子体从左侧射入时,CD受力的方向指向GH解析:由电路知识知GH中的电流方向向下.等离子体从右方射入时,由左手定则可知,正离子向下偏转,负离子向上偏转,CD中的电流方向向上,由异向平行的电流相互排斥可知,CD受力的方向背离GH,选项A正确,选项B错误.同理可知,等离子体从左方射入时,CD受力的方向指向GH,选项C错误,选项D正确.答案:AD9.如图所示,一束带电粒子以一定的初速度沿直线通过由相互正交的匀强磁场B和匀强电场E组成的速度选择器,然后粒子通过平板S上的狭缝P,进入另一匀强磁场B,最终打在A1A2上.下列表述正确的是

11、()A.粒子带负电B.所有打在A1A2上的粒子,在磁场B中运动时间都相同C.能通过狭缝P的带电粒子的速率等于EBD.粒子打在A1A2上的位置越靠近P,粒子的比荷qm越大解析:根据题图粒子轨迹,利用左手定则可知粒子带正电,选项A错误;根据带电粒子在匀强磁场中运动洛伦兹力等于向心力,其运动周期T=2mqB,所有打在A1A2上的粒子,在磁场B中运动时间都为半个周期,时间与粒子比荷成反比,选项B错误;带电粒子以一定的初速度沿直线通过由相互正交的匀强磁场B和匀强电场E组成的速度选择器,满足qE=qvB,能通过狭缝P的带电粒子的速率等于v=EB,选项C正确;根据带电粒子在匀强磁场中运动洛伦兹力等于向心力,

12、其轨迹半径r=mvqB,粒子打在A1A2上的位置越靠近P,轨迹半径r越小,粒子的比荷qm越大,选项D正确.答案:CD10.如图所示,MN是磁感应强度为B的匀强磁场的边界.一质量为m、电荷量为q的粒子(重力不计)在纸面内从O点射入磁场.若粒子速度为v0,最远能落在边界上的A点.下列说法正确的有()A.若粒子落在A点的左侧,其速度一定小于v0B.若粒子落在A点的右侧,其速度一定大于v0C.若粒子落在A点左右两侧d的范围内,其速度不可能小于v0-qBd2mD.若粒子落在A点左右两侧d的范围内,其速度不可能大于v0+qBd2m解析:由牛顿第二定律可得qv0B=mv02r,解得r=mv0qB,当粒子从O

13、点垂直MN界面射入磁场时,粒子射出磁场位置与MN交点距入射点O最远,即OA=2r,当粒子以速度v0从O点沿任意方向入射时,一定打在OA内,选项A错误;结合前面分析只有vv0时粒子才有可能打在A点的右侧,选项B正确;若r1=12(OA-d),则根据qvB=mv2r1可得v=qB(OA-d)2m,由上面可得v0=qBOA2m,则有v=v0-qBd2m,只有vv0-qBd2m时,粒子才可能落入该范围内,选项C正确;若粒子以v2垂直MN边界射入磁场恰好到达距A点右侧d位置时,r2=12(OA+d),同理可推得v2=v0+qBd2m,当粒子速度vv2时,只要粒子不垂直MN射入磁场,也有可能落到距A点右侧

14、d位置以内,选项D错误.答案:BC二、填空题(本题包含2小题,共14分)11.(4分)如图所示,正方形线框abcd边长为L,悬挂在等臂天平的一侧,线框的下端处在一个如图所示的匀强磁场中,调节天平右盘的砝码使天平平衡,如果线框中通过电流为I,则需要在右盘中加一个质量为m的砝码,天平再次平衡.线框bc段上的电流方向是,磁场的磁感应强度大小是.答案:cbmgIL12.(10分)如图所示,厚度为h、宽度为d的导体板放在垂直于它的磁感应强度为B的均匀磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A之间会产生电势差,这种现象称为霍尔效应.实验表明,当磁场不太强时,电势差U、电流I和B的关系为U=K

15、IBd,式中的比例系数K称为霍尔系数.霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧出现多余的正电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差.设电流I是电子的定向流动形成的,电子的平均定向速度为v,电荷量为e,回答下列问题:(1)达到稳定状态时,导体板上侧面A的电势(选填“高于”“低于”或“等于”)下侧面A的电势;(2)电子所受洛伦兹力的大小为;(3)当导体板上下两侧面之间的电势差为U时,电子所受静电力的大小为;(4)由静电力和洛伦兹力平衡的条件,证明霍尔系数为

16、K=1ne,其中n代表导体板单位体积中电子的个数.解析:(1)由左手定则可知电子所受洛伦兹力方向向上,根据题意知静电力方向向下,电场强度方向向上,所以AA.(2)由洛伦兹力公式得F洛=Bev.(3)F=qE=eUh或F=F洛=Bev.(4)电子受到横向的静电力F与洛伦兹力F洛相平衡,即eUh=Bev.通过导体板的电流I=qt=n(Svt)et=nSve=nhdve.已知公式U=KIBd,由式得K=1ne.答案:(1)低于(2)Bev(3)eUh(或Bev)(4)见解析三、计算题(本题包含4小题,共46分)13.(10分)如图所示,在倾角为=30的斜面上,固定一宽L=0.25 m 的平行金属导轨

17、,在导轨上端接入电源和滑动变阻器.电源电动势E=12 V,内阻为r=1.0 .一质量 m=20 g的金属棒ab与两导轨垂直并接触良好.整个装置处于磁感应强度B=0.80 T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,g取10 m/s2,要保持金属棒在导轨上静止,求:(1)金属棒所受到的安培力;(2)通过金属棒的电流;(3)滑动变阻器R接入到电路中的阻值.解析:(1)F=mgsin 30F=0.1 N.(2)金属棒静止在金属轨道上受力平衡,如图所示解得I=FBL=0.5 A.(3)设变阻器接入电路的阻值为R,根据闭合电路欧姆定律E=I(R+r)解得R=EI-r=23

18、 .答案:(1)0.1 N(2)0.5 A(3)23 14.(10分)如图所示,在半径R的圆形区域内,分布着磁感应强度大小为B的匀强磁场.在圆心处发射一个运动方向与磁场垂直的电子,电子质量为m,电荷量为e.求这个电子要穿离此磁场区域应具有的最小动能.解析:电子刚好不穿离磁场区域的条件是其轨迹正好和圆相切,故电子运动的半径r=12R.电子做圆周运动的向心力由洛伦兹力提供,即evB=mv2r而动能Ek=12mv2三式联立可得Ek=e2B2R28m.答案:e2B2R28m15.(12分)如图所示,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场

19、方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动.A、C两点间距离为h,重力加速度为g.(1)求小滑块运动到C点时的速度大小vC;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功Wf;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为vD,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小vP.解析:(1)小滑块沿MN运动过程,水平方向受力满足qvB+N=qE小滑块在C点离开M

20、N时N=0解得vC=EB.(2)由动能定理mgh-Wf=12mvC2-0解得Wf=mgh-mE22B2.(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤去磁场后小滑块将做类平抛运动,等效加速度为gg=qEm2+g2且vP2=vD2+g2t2解得vP=vD2+qEm2+g2t2.答案:(1)EB(2)mgh-mE22B2(3)vD2+qEm2+g2t216.(14分)(2018全国卷)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,

21、宽度均为l,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行,一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力. (1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为6,求该粒子的比荷及其从M点运动到N点的时间.解析:(1)粒子运动的轨迹如图甲所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)甲乙(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M点射入时速度的大小为v0,在

22、下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为(见图乙),速度沿电场方向的分量为v1,根据牛顿第二定律有qE=ma式中q和m分别为粒子的电荷量和质量.由运动学公式有v1=atl=v0tv1=vcos 粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得qvB=mv2R由几何关系得l=2Rcos 联立式得v0=2ElBl.(3)由运动学公式和题给数据得v1=v0cot 6联立式得qm=43ElB2l2设粒子由M点运动到N点所用的时间为t,则t=2t+22-62T式中T是粒子在磁场中做匀速圆周运动的周期,T=2mqB由式得t=BlE1+3l18l.答案:(1)见解析图(2)2ElBl(3)43ElB2l2BlE1+3l18l

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3