ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:180KB ,
资源ID:376485      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-376485-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高考数学统考一轮复习 课后限时集训68 n次独立重复试验与二项分布(理含解析)新人教版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高考数学统考一轮复习 课后限时集训68 n次独立重复试验与二项分布(理含解析)新人教版.doc

1、课后限时集训(六十八)n次独立重复试验与二项分布建议用时:40分钟一、选择题1已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为()A B C DB设A第一次拿到白球,B第二次拿到红球,则P(AB),P(A).所以P(B|A).2已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A B C DB甲、乙、丙三人都没有被录取的概率为P1,所以三人中至少有一人被录取的概率为P1P1,故选B3袋中装有2个红球,

2、3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是()A B C DD袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P1,3次中恰有2次抽到黄球的概率PC.4某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A0.8 B0.75 C0.6 D0.45A令A“第一天空气质量优”,B“第二天空气质量优”,则P(AB)0.6,P(A)0.75,P(B|A)0.8.5甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,有下列

3、说法:目标恰好被命中一次的概率为;目标恰好被命中两次的概率为;目标被命中的概率为;目标被命中的概率为1,以上说法正确的是()A B C DC对于说法,目标恰好被命中一次的概率为,所以错误,结合选项可知,排除B、D;对于说法,目标被命中的概率为,所以错误,排除A故选C二、填空题6设随机变量XB(2,p),YB(4,p),若P(X1),则P(Y2) .因为随机变量XB(2,p),YB(4,p),又P(X1)1P(X0)1(1p)2,解得p,所以YB,则P(Y2)1P(Y0)P(Y1).7如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为 设女孩个数为X,女孩多于男孩的概率为P(

4、X2)P(X2)P(X3)C C3 .8三个元件T1,T2,T3正常工作的概率分别为,将T2,T3两个元件并联后再和T1串联接入电路,如图所示,则电路不发生故障的概率为 三个元件T1,T2,T3正常工作的概率分别为,将T2,T3两个元件并联后再和T1串联接入电路,则电路不发生故障的概率为:p.三、解答题9设某人有5发子弹,他向某一目标射击时,每发子弹命中目标的概率为.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完(1)求他前两发子弹只命中一发的概率;(2)求他所耗用的子弹数X的分布列解记“第k发子弹命中目标”为事件Ak(k1,2,3,4,5),则A1,A2,A3,A4,A5相互独立,

5、且P(Ak),P().(1)法一:他前两发子弹只命中一发的概率为P(A1)P(A2)P(A1)P()P()P(A2).法二:由独立重复试验的概率计算公式知,他前两发子弹只命中一发的概率为PC.(2)X的所有可能取值为2,3,4,5.P(X2)P(A1A2)P(),P(X3)P(A1 )P(A2A3),P(X4)P(A1A3A4)P(A2 ),P(X5)1P(X2)P(X3)P(X4).综上,X的分布列为X2345P10.唐三彩是中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位唐三彩的制作工艺十分复杂,而且优质品检验异常严格,检验方案是:先从烧制

6、的这批唐三彩中任取3件做检验,这3件唐三彩中优质品的件数记为n.如果n2,再从这批唐三彩中任取3件做检验,若都为优质品,则这批唐三彩通过检验;如果n3,再从这批唐三彩中任取1件做检验,若为优质品,则这批唐三彩通过检验;其他情况下,这批唐三彩都不能通过检验假设这批唐三彩的优质品率为,即取出的每件唐三彩是优质品的概率都为,且各件唐三彩是否为优质品相互独立(1)求这批唐三彩通过检验的概率;(2)已知每件唐三彩的检验费用都为100元,且抽取的每件唐三彩都需要检验,对这批唐三彩做质量检验所需的总费用记为X元,求X的分布列解(1)设“第一次取出的3件唐三彩中恰有2件优质品”为事件A1,“第一次取出的3件唐

7、三彩全是优质品”为事件A2,“第二次取出的3件唐三彩都是优质品”为事件B1,“第二次取出的1件唐三彩是优质品”为事件B2,“这批唐三彩通过检验”为事件A,依题意有A(A1B1)(A2B2),所以P(A)P(A1B1)P(A2B2)C.(2)X的所有可能取值为300,400,600,P(X300)CC,P(X400),P(X600)C.所以X的分布列为X300400600P1箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为()A BC DCB由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的

8、球是白球的情况,此事件发生的概率为.2甲、乙等4人参加4100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A B C DD甲不跑第一棒共有AA18(种)情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A6(种)情况;(2)乙不跑第一棒,共有AAA8(种)情况,甲不跑第一棒的条件下,乙不跑第二棒的概率为,故选D3(2019全国卷)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率

9、是 0.18记事件M为甲队以41获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)0.6(0.620.5220.60.40.522)0.18.4(2019北京高考)改革开放以来,人们的支付方式发生了巨大转变近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1 000(1 000,2 000大于2 000仅使用A18人9人3人仅使用B10人14人1人(1)从全校学生中随

10、机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1 000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2 000元根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2 000元的人数有变化?说明理由解(1)由题意知,样本中仅使用A的学生有189330人,仅使用B的学生有1014125人,A,B两种支付方式都不使用的学生有5人故样本中A,B两种支付方式都使用的学生有1003025540

11、人所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为0.4.(2)X的所有可能值为0,1,2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”,事件D为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”由题设知,事件C,D相互独立,且P(C)0.4,P(D)0.6.所以P(X2)P(CD)P(C)P(D)0.24,P(X1)P(CD)P(C)P()P()P(D)0.4(10.6)(10.4)0.60.52,P(X0)P()P()P()0.24.所以X的分布列为X012P0.240.520.24故X的

12、数学期望E(X)00.2410.5220.241.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2 000元”假设样本仅使用A的学生中,本月支付金额大于2 000元的人数没有变化,则由上个月的样本数据得P(E).答案示例1:可以认为有变化理由如下:P(E)比较小,概率比较小的事件一般不容易发生一旦发生,就有理由认为本月的支付金额大于2 000元的人数发生了变化,所以可以认为有变化答案示例2:无法确定有没有变化理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化(2020郑州模拟)手机是人们必不可少的工具之一,极大

13、地方便了人们的生活、工作、学习某调查机构调查了某地区各品牌手机的线下销售情况,将数据整理得到如下表格品牌ABCDEF其他市场占有率30%25%20%10%6%1%8%每台利润/元10080851 00070200该地区某商场出售各种品牌的手机,以各品牌手机的市场占有率作为各品牌手机的售出概率(1)此商场有一个优惠活动,即每天抽取一个数字n(n2,且nZ),规定若当天卖出的第n台手机恰好是当天卖出的第一台D品牌手机时,则此台D品牌手机可以打五折为保证每天该活动的中奖概率小于0.05,求n的最小值(lg 0.50.3,lg 0.90.046)(2)此商场中的一个手机专卖店只出售A和D两种品牌的手机

14、,A,D品牌手机的售出概率之比为31,若此专卖店某天售出3台手机,其中A手机X台,求X的分布列及此专卖店当天所获利润的期望值解(1)售出一台D品牌手机的概率P0.1,售出一台非D品牌手机的概率P0.9,由题意可得0.9n10.10.05,即0.9n10.5,所以n16.52,故n7.52,即n的最小值为8.(2)依题意可知A品牌手机售出的概率P1,D品牌手机售出的概率P2,X的所有可能取值为0,1,2,3,则可得XB,所以P(X0),P(X1)C,P(X2)C,P(X3),故X的分布列为X0123P所以此专卖店当天所获利润的期望值为1 0003(110021 000)(210011 000)3100975(元).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3