ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:295KB ,
资源ID:374775      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-374775-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019-2020学年人教A版数学选修2-3课时分层作业17 回归分析的基本思想及其初步应用 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019-2020学年人教A版数学选修2-3课时分层作业17 回归分析的基本思想及其初步应用 WORD版含解析.doc

1、高考资源网() 您身边的高考专家课时分层作业(十七)回归分析的基本思想及其初步应用(建议用时:60分钟)基础达标练一、选择题1如图所示的是四张残差图,其中回归模型的拟合效果最好的是()B四张残差图中,只有选项A,B中的残差图是水平带状区域分布,且选项B中的残差点散点分布集中在更狭窄的范围内,所以选项B中回归模型的拟合效果最好2在回归分析中,相关指数R2的值越大,说明残差平方和()A越大B越小C可能大也可能小D以上均错BR21,当R2越大时,(yii)2越小,即残差平方和越小,故选B.3某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:x/月份1234

2、5y/万盒55668若x,y线性相关,线性回归方程为0.7x,估计该制药厂6月份生产甲胶囊产量为()A8.0万盒B8.1万盒C8.9万盒D8.6万盒B回归直线一定过样本点的中心由已知数据可得3,6,代入线性回归方程,可得0.73.9,即线性回归方程为0.7x3.9.把x6代入,可近似得8.1,故选B.4某化工厂为预测某产品的回收率y,而要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得i52,i228,478,iyi1 849,则y与x的线性回归方程是()A.11.472.62xB.11.472.62xC.2.6211.47xD.11.472.62xA由题中数据得6.5,28.

3、5,2.62,28.52.626.511.47,y与x的线性回归方程是2.62x11.47,故选A.5若某地财政收入x与支出y满足回归方程xei(单位:亿元)(i1,2,),其中0.8,2,|ei|0.5,如果今年该地区财政收入10亿元,年支出预计不会超过()A10亿元B9亿元C10.5亿元D9.5亿元C0.8102ei10ei,|ei|0.5,9.510.5.二、填空题6在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线yx1上,则这组样本数据的样本相关系数为_1根据样本相关系数的定义可

4、知,当所有样本点都在直线上时,相关系数为1.7对具有线性相关关系的变量x和y,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为_106.5x由题意知2,3,6.5,所以36.5210,即回归直线的方程为106.5x.8已知方程0.85x82.71是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,的单位是kg,那么针对某个体(160,53)的残差是_0.29把x160代入0.85x82.71,得0.8516082.7153.29,所以残差y5353.290.29.三、解答题9某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验

5、,得到的数据如下:零件的个数x/个2345加工的时间y/小时2.5344.5(1)在给定的图坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程x;(3)试预测加工10个零件需要多少时间?(注:,)解(1)散点图如图(2)由表中数据得iyi52.5,3.5,3.5,54,所以0.7,所以1.05.所以0.7x1.05.(3)将x10代入线性回归方程,得0.7101.058.05,所以预测加工10个零件需要8.05小时10关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:x23456y2.23.85.56.57.0若由资料可知y对x呈线性相关关系试求:(1)线性回归

6、方程;(2)估计使用年限为10年时,维修费用是多少?附:,解(1)4,5,90,iyi112.3,1.23.于是51.2340.08.所以线性回归方程为x1.23x0.08.(2)当x10时,1.23100.0812.38(万元),即估计使用10年时维修费用是12.38万元能力提升练1甲、乙、丙、丁4位同学各自对A,B两变量进行回归分析,分别得到散点图与残差平方和(yii)2如下表:甲乙丙丁散点图残差平方和115106124103哪位同学的试验结果体现拟合A,B两变量关系的模型拟合精度高()A甲B乙C丙D丁D根据线性相关的知识,散点图中各样本点条状分布越均匀,同时保持残差平方和越小(对于已经获

7、取的样本数据,R2的表达式中(yi)2为确定的数,则残差平方和越小,R2越大),由回归分析建立的线性回归模型的拟合效果越好,由试验结果知丁要好些,故进D.2为研究女大学生体重和身高的关系,从某大学随机选取8名女大学生,其身高和体重数据如下表:身高x/cm165165157170175165155170体重y/kg4857505464614359利用最小二乘法求得身高预报体重的回归方程为0.848x85.632,据此可求得R20.64.下列说法正确的是()A两组变量的相关系数为0.64BR2越趋近于1,表示两纽变量的相关关系越强C女大学生的身高解释了64%的体重变化D女大学生的身高差异有64%是

8、由体重引起的C用最小二乘法求得身高预报体重的回归方程为0.848x85.632,据此可求得R20.64,即女大学生的身高解释了64%的体重变化,而随机误差贡献了剩余的36%,故选C.3在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线yebxa的周围,令ln y,求得回归直线方程为0.25x2.58,则该模型的回归方程为_ye0.25x2.58因为0.25x2.58,ln y,所以ye0.25x2.58.4面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本某白酒酿造企业市场部对该企业9月份的产品销量x(单位:千箱)与单位成本y(单位:元)的资料进行线性

9、回归分析,结果如下:,71,79,iyi1 481.则销量每增加1 000箱,单位成本下降_元1818 2由题意知1.818 2,71(1.818 2)77.36,1.818 2x77.36,销量每增加1千箱,则单位成本下降1.818 2元5某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元88.28.48.68.89销量y/件908483807568(1)求回归直线方程x,其中20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)解(1)由于(88.28.48.68.89)8.5,(908483807568)80.所以80208.5250,从而回归直线方程为20x250.(2)设工厂获得的利润为L元,依题意得Lx(20x250)4(20x250)20x2330x1 000202361.25.当且仅当x8.25时,L取得最大值故当单价定为8.25元时,工厂可获得最大利润- 8 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3