ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:844KB ,
资源ID:372121      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-372121-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广西桂林、崇左市2019届高三5月联合模拟数学文科试卷 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广西桂林、崇左市2019届高三5月联合模拟数学文科试卷 WORD版含解析.doc

1、2019年高考桂林市、崇左市联合模拟考试数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】D【解析】【分析】首先求解出集合,根据交集定义求得结果.【详解】则本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.2.若复数,则( )A. B. C. D. 【答案】A【解析】【分析】根据复数的除法运算,直接计算即可得出结果.【详解】因为,所以.故选A【点睛】本题主要考查复数的除法运算,熟记运算法则即可,属于基础题型.3.已知向量,.若,则( )A. 2B. 1C.

2、 0D. -1【答案】B【解析】【分析】先由,得到的坐标,再由,即可求出结果.【详解】因为,所以,又,所以,解得.故选B【点睛】本题主要考查平面向量的数量积,熟记数量积的坐标运算即可,属于基础题型.4.在等差数列中,若,则( )A. 3B. 4C. 5D. 6【答案】C【解析】【分析】先设公差为,根据题意求出公差,得到通项公式,求出,进而可求出结果.【详解】因为在等差数列中,设公差为,则,所以,故,因此,所以,又,所以,因此.故选C【点睛】本题主要考查等差数列,熟记等差数列的通项公式以及前项和公式即可,属于常考题型.5.已知是第一象限角,且,则( )A. B. C. D. 【答案】D【解析】【

3、分析】先由是第一象限的角,确定,再由,即可求出结果.【详解】因为是第一象限的角,所以,又,所以,代入可得,所以.故选D【点睛】本题主要考查同角三角函数基本关系,熟记商数关系,平方关系即可,属于常考题型.6.如图程序框图的算法思路源于我国古代数学名著九章算术中的“更相减损术”.执行该程序框图,若输入的分别为12,18,则输出的的值为( )A. 1B. 2C. 3D. 6【答案】D【解析】【分析】直接按照程序框图运行程序即可.【详解】1218,b=18-12=6,126,a=12-6=6,a=b,输出a=6.故选:D【点睛】本题主要考查程序框图和更相减损术,意在考查学生对这些知识的理解掌握水平和分

4、析推理能力.7.已知,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件【答案】D【解析】【分析】从充分性和必要性两个方面判断分析得解.【详解】先考虑充分性,时,如a=1,b=-1,但是ab不成立,所以“”是“”非充分性条件;再考虑必要性,时,a=-1,b=1,但是不成立,所以“”是“”非充必要性条件.故“”是“”的既不充分又不必要条件.故选:D【点睛】本题主要考查充分必要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.已知平面平面,是内的一条直线,是内的一条直线,且,则( )A. B. C. 或D. 且【答案】C【解析

5、】【分析】根据空间中直线与直线、直线与平面位置关系,可直接得出结果.【详解】因为平面平面,是内的一条直线,是内的一条直线,要使,只能或垂直平面与平面的交线,因此,或;故选C【点睛】本题主要考查空间的线面、线线位置关系,熟记线面、线线位置关系以及面面垂直的性质定理即可,属于常考题型.9.在正方体中,直线与平面所成角的正弦值为( )A. 1B. C. D. 【答案】B【解析】【分析】先以点为坐标原点,建立空间直角坐标系,求出平面的法向量,再求出直线的法向量,求两向量夹角余弦值,进而可求出结果.【详解】以点为坐标原点,建立如图所示的空间直角坐标系,设正方体棱长为1,则所以,因为在正方体中平面,所以,

6、又,所以平面,因此是平面的一个法向量,设直线与平面所成角为,则.故选B【点睛】本题主要考查直线与平面所成角的正弦值,灵活掌握向量的方法求解即可,属于常考题型.10.将函数的图象向右平移个单位,得到函数的图象,则下列说法中不正确的是( )A. 的周期为B. 是的一条对称轴C. D. 为奇函数【答案】B【解析】【分析】先由题意得到的解析式,再根据正弦函数的性质,即可求出结果.【详解】因为将函数的图象向右平移个单位,得到函数的图象,所以,所以其最小正周期为,所以A正确;又,所以为奇函数,即D正确;,故C正确;由可得,的对称轴为,故B错;故选B【点睛】本题主考查三角函数的图像变换以及三角函数的性质,熟

7、记正弦函数的性质即可,属于常考题型.11.若函数,则在点处的切线方程为( )A. B. C. D. 【答案】D【解析】【分析】先对函数求导,将代入导函数求出切线斜率,进而可求出结果.【详解】因为,所以,因此在点处的切线斜率为,所以,所求切线方程为,整理得.故选D【点睛】本题主要考查曲线在某一点处的切线方程,熟记导数的几何意义即可,属于常考题型.12.过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为( )A. 5B. 4C. 3D. 2【答案】A【解析】【分析】求得两圆的圆心和半径,设双曲线的左右焦点为,连接,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计

8、算即可得到所求值【详解】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,连接,可得当且仅当为右顶点时,取得等号,即最小值5故选:【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若,则_【答案】.【解析】【分析】根据对数的运算,可直接求出结果.【详解】因为,所以,故,所以.故答案为【点睛】本题主要考查对数的计算,熟记对数运算性质即可,属于基础题型.14.设函数,若,则_【答案】【解析】【分析】根据求得,代入求得结果.【详解】 则本题正确结果:【点睛】本

9、题考查利用函数解析式求解函数值的问题,属于基础题.15.若实数满足,则的最大值为_【答案】【解析】【分析】根据约束条件画出可行域,利用的几何意义找到斜率的最大值即可.【详解】根据约束条件可得可行域如下图阴影部分所示:的几何意义为可行域中的点与原点连线的斜率由上图可知,与原点连线斜率最大由得:则本题正确结果:【点睛】本题考查线性规划中的斜率型最值问题的求解,关键是能将问题转化为可行域中的点与原点连线的斜率的求解问题.16.以抛物线:的顶点为圆心的圆交于两点,交的准线于两点.已知,则等于_【答案】.【解析】【分析】画出图形,利用勾股定理以及圆的半径列出方程求解即得p的值.【详解】如图:, ,解得:

10、,故答案为:【点睛】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查数形结合思想,属于中档题三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列满足,(1)求,;(2)判断数列是否为等比数列,并说明理由;(3)求数列的前项和.【答案】(1)1,3,7;(2)见解析;(3).【解析】【分析】(1)根据题中条件,逐项计算,即可得出结果;(2)根据得到,进而可得出结论,求出结果;(3)根据分组求和的方法,结合等比数列的求和公式,即可求出结果.【详解】(1)由及知,解得:,同理得,.(2)由知,即.是以为首项,公比为2的等比数列.(3),. .

11、【点睛】本题主要考查递由推公式证明数列是等比数列、以及数列的求和,熟记等比数列的通项公式、求和公式即可,属于常考题型.18.某汽车公司为调查店个数对该公司汽车销量的影响,对同等规模的四座城市的店一季度汽车销量进行了统计,结果如下:(1)根据统计的数据进行分析,求关于的线性回归方程;(2)该公司为扩大销售拟定在同等规模城市开设4个店,预计市的店一季度汽车销量是多少台?附:回归方程中的斜率和截距的最小二乘法估计公式分别为:;.【答案】(1);(2)31台.【解析】【分析】(1)先由题中数据求出;,由;即可求出结果;(2)将代入(1)的结果,即可得出所求预测值.【详解】(1)由题意可得:;,.所以回

12、归直线方程为.(2)将代入上式得预计市的店一季度汽车销量是31台.【点睛】本题主要考查线性回归方程,熟记最小二乘法求的估计值即可,属于常考题型.19.已知四棱锥的底面是菱形,底面,是上的任意一点.(1)求证:平面平面;(2)设,求点到平面的距离.【答案】(1)见解析;(2).【解析】【分析】(1)根据线面垂直的判定定理先证明平面,即可得出平面平面;(2)用等体积法求解,根据,结合题中数据即可求出结果.【详解】(1)平面,平面,.四边形是菱形,.,平面.平面,平面平面.(2)设,连结,则,四边形是菱形,.,.设点到平面的距离为,平面, 解得.即点到平面的距离为.【点睛】本题主要考查面面垂直的证明

13、以及点到平面的距离,熟记面面垂直的判定定理以及等体积法求点到面的距离即可,属于常考题型.20.椭圆的离心率,过点和的直线与原点间的距离为.(1)求椭圆的方程;(2)过点的直线与椭圆交于、两点,且点位于第一象限,当时,求直线的方程.【答案】(1);(2) .【解析】分析】(1)由题得到关于a,b,c的方程组,解方程组即得解;(2)设,(,),设直线的方程为.联立直线和椭圆方程,利用韦达定理求出m的值得解.【详解】(1)据题知,直线的方程为.依题意得解得,所以椭圆的方程为.(2)设,(,),设直线的方程为.代入椭圆方程整理得:.,.由,依题意可得:,结合得,消去解得,(不合题意).所以直线的方程为

14、.【点睛】本题主要考查椭圆的标准方程的求法,考查直线和椭圆的位置关系,考查直线方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.设函数,.(1)当时,讨论的单调性;(2)已知,证明.【答案】(1)在上单调递减,在上单调递增.(2)见解析.【解析】【分析】(1)先由,求出函数的导函数,通过解导函数对应的不等式,即可得出结果;(2)先对函数求导,用导数的方法判断出函数的单调性,求出最大值,即可得出结论成立.【详解】的定义域为.(1)当时,.由,得;得.所以函数在上单调递减,在上单调递增.(2).,的两根为.;.所以在上单调递增,在上单调递减. ,; .【点睛】本题主要考查导数的

15、应用,通常需要先对函数求导,利用导数的方法研究函数的单调性、最值等,属于常考题型.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.在平面直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)过点倾斜角为的直线与曲线交于两点,求的值.【答案】(1);(2)8.【解析】【分析】(1)先求出曲线的普通方程为,再化成极坐标方程;(2)先写出直线的参数方程(为参数),再将直线的参数方程代入圆的方程,利用直线参数方程t的几何意义解答.【详解】(1)依题意,曲线的普通方程为,即,故,

16、故,故所求极坐标方程为;(2)设直线的参数方程为(为参数),将此参数方程代入中,化简可得,显然.设所对应的参数分别为,则.【点睛】本题主要考查参数方程、普通方程和极坐标方程的互化,考查直线参数方程t的几何意义解答,意在考查学生对这些知识的理解掌握水平和分析推理能力.选修4-5:不等式选讲23.已知函数,其中.(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)利用分类讨论法解绝对值不等式;(2)先求出,再求出.解不等式即得解.【详解】(1)当时,.当时,由;当时,由不成立;综上所述,当时,不等式的解集为.(2)记 则.依题意得,.所以实数的取值范围为【点睛】本题主要考查分类讨论法解绝对值不等式,考查绝对值不等式的恒成立的问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3