ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:443.50KB ,
资源ID:369852      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-369852-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高考数学一轮复习 核心素养测评 第9章 9.9.3 圆锥曲线与其他知识的交汇问题(含解析)新人教B版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高考数学一轮复习 核心素养测评 第9章 9.9.3 圆锥曲线与其他知识的交汇问题(含解析)新人教B版.doc

1、核心素养测评 五十八圆锥曲线与其他知识的交汇问题(25分钟50分)一、选择题(每小题5分,共20分)1.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,抛物线的焦点为F,且,4,成等差数列,则k= ()A.2或-1B.-1C.2D.1【解析】选C.设A(x1,y1),B(x2,y2).由 消去y,得k2x2-4x+4=0,故=16-16k2=640,解得k-1,且x1+x2=.由=x1+=x1+2,=x2+=x2+2,且,4,成等差数列,得x1+2+x2+2=8,得x1+x2=4,所以=4,解得k=-1或k=2,又k-1,故k=2.2.如图,F1,F2分别是双曲线-=1(a0,b0

2、)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A,B两点,若F2AB是等边三角形,则双曲线的离心率为()A.B.2 C.-1D.+1【解析】选D.连接AF1,依题意知:=,2c=2,所以2a=-=(-1),e=+1.3.(多选)过抛物线y2=2px(p0)焦点F的直线与抛物线交于A,B两点,作AC,BD垂直抛物线的准线l于C,D,其中O为坐标原点,则下列结论正确的是()A.+=-B.存在R,使得=成立C.=0D.准线l上任意一点M,都使得0【解析】选ABC.由+=-,可得A正确;设A(x1,y1),B(x2,y2),可得C,D,又kOA=,kAD=,设直线AB的方程为

3、x=my+.代入抛物线的方程,可得y2-2pmy-p2=0,可得y1y2=-p2,即有y1(y1-y2)=-y1y2=2px1+p2,则kOA=kAD,即存在R,使得=成立,则B正确;=(-p,y1)(-p,y2)=y1y2+p2=0,可得C正确;由抛物线的定义可得|AB|=|AC|+|BD|,可得以AB为直径的圆的半径与梯形ACDB的中位线长相等,即该圆与CD相切,设切点为M,即有AMBM,则=0,则D不正确.4.已知双曲线C1:-y2=1,双曲线C2:-=1(ab0)的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OMMF2,O为坐标原点,若OMF2的面积S=16,且双曲

4、线C1,C2的离心率相同,则双曲线C2的实轴长是()A.32B.16 C.8D.4【解析】选B.双曲线C1:-y2=1的离心率为,设F2(c,0),双曲线C2一条渐近线方程为y=x,则|F2M|=b,即|OM|=a,由S=16得ab=16,即ab=32,又a2+b2=c2,=,解得a=8,b=4,c=4,即双曲线的实轴长为16.二、填空题(每小题5分,共10分)5.阿基米德(公元前287年公元前212年)不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为,面积为20,

5、则椭圆C的标准方程为_.【解析】依题意设椭圆C的方程为+=1(ab0),则椭圆C的面积为S=ab=20,又e=,解得a2=25,b2=16.则椭圆C的标准方程为+=1.答案:+=16.(2020杭州模拟)椭圆+=1上任意两点P,Q,O为坐标原点,若POQO,则|OP|OQ|的最小值是_,此时|OP|=_.【解析】由题意可设点P(|OP|cos ,|OP|sin ),Q,由P,Q在椭圆上,得:=+,=+,+得:+=+,所以=+,得|OP|OQ|,所以|OP|OQ|的最小值为.答案:三、解答题(每小题10分,共20分)7.已知椭圆C:+=1(ab0)的一个焦点为F(1,0),点P在C上.世纪金榜导

6、学号(1)求椭圆C的方程.(2)若直线l:y=x+m与椭圆C相交于A,B两点,问y轴上是否存在点M,使得ABM是以M为直角顶点的等腰直角三角形?若存在,求点M的坐标;若不存在,说明理由.【解析】(1)由题意可得c=1,点P在C上,所以+=1,又a2=b2+c2=b2+1,解得a2=4,b2=3,所以椭圆C的方程为+=1.(2)假设y轴上存在点M,使ABM是以M为直角顶点的等腰直角三角形,设A,B,线段AB的中点为N,由 ,消去y可得7x2+8mx+4m2-12=0,=64m2-28=480,解得m20)的左焦点F与抛物线C2:y2=-2px(p0)的焦点重合,M是C1与C2在第二象限内的交点,

7、抛物线的准线与x轴交于点E,且|ME|=.世纪金榜导学号(1)求椭圆C1及抛物线C2的方程.(2)过E作直线l交椭圆C1于A,B两点,则在椭圆的长轴上是否存在点N,使得为定值?若存在,求出点N的坐标及定值;若不存在,请说明理由.【解析】(1)由两曲线焦点重合,知=,由椭圆的对称性,知E为椭圆的右焦点,连接MF,由椭圆的定义知|MF|+|ME|=4,则|MF|=4-=.设M(xM,yM),过点M作准线的垂线,垂足为H,由抛物线的定义知|MF|=|MH|=,因而yM=,xM=-,代入+=1中,得+=1,与=联立,得p=2,b2=3,所以椭圆的方程为+=1,抛物线的方程为y2=-4x.(2)由(1)

8、知E(1,0),若直线l的斜率存在,设直线方程为y=k(x-1),由得(3+4k2)x2-8k2x+4k2-12=0.设A(x1,y1),B(x2,y2),所以x1+x2=,x1x2=.假设点N存在,其坐标为(m,0),其中-2m2,=(x1-m,y1)(x2-m,y2)=(x1-m)(x2-m)+k(x1-1)k(x2-1)=(1+k2)x1x2-(m+k2)(x1+x2)+m2+k2=(1+k2)-(m+k2)+m2+k2=.若为定值,则满足=,得m=,定值为-.当直线l的斜率不存在时,直线l的方程为x=1,不妨设其与椭圆+=1的交点为A1,B1,-,又N,0,则=-,-,-=-,综上,在椭圆的长轴上存在点N,0,使得=-,为定值.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3