1、课题:合情推理(一)归纳推理课时安排:一课时课型:新授课教学目标:1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。教学重点:了解合情推理的含义,能利用归纳进行简单的推理。教学难点:用归纳进行推理,做出猜想。教学过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是
2、推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、 蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。2、 三角形的内角和是,凸四边形的内角和是,凸五边形的内角和是由此我们猜想:凸边形的内角和是3、,由此我们猜想:(均为正实数)这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳)归纳推理的一般步骤: 对有限的资料进行观察、分析、归纳 整理; 提出带有规律性的结论,即猜想; 检验猜想。 实验
3、,观察概括,推广猜测一般性结论三、例题讲解:例1已知数列的通项公式,试通过计算的值,推测出的值。【学生讨论:】(学生讨论结果预测如下)(1)由此猜想,学生讨论:1)哥德巴赫猜想:任何大于2的偶数可以表示为两个素数的之和。 2)三根针上有若干个金属片的问题。四、巩固练习:1、已知,经计算: ,推测当时,有_.2、已知:,。观察上述两等式的规律,请你写出一般性的命题,并证明之。3、观察(1)(2)。由以上两式成立,推广到一般结论,写出你的推论。注:归纳推理的几个特点:1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.五、 教学小结:1.归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质。2)从已知的相同性质中推出一个明确表述的一般命题(猜想)。六、作业:七、教后感: