ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:850KB ,
资源ID:369094      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-369094-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高考数学基础总复习提升之专题突破详解:专题09 三角化简技巧 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高考数学基础总复习提升之专题突破详解:专题09 三角化简技巧 WORD版含解析.doc

1、一陷阱类型1.用已知角表示未知角2.降幂公式的灵活应用3.“1”的变通4.特殊角的替换作用5.角的一致性6.辅助角公式的灵活应用7.正切公式的灵活应用8.正切变两弦9. 与的关系二防陷阱演练1.用已知角表示未知角例1已知, ,则 ( )A. B. C. D. 【答案】A【解析】,.选A.【防陷阱措施】用题目所给的已知角表示未知角能够简化解题步骤,节约解题时间练习1设,若,则( )A. B. C. D. 【答案】D练习2若 ,则tan2=()A. 3 B. 3 C. D. 【答案】D【解析】因为,所以 ,则 ;故选D.练习3. 若是锐角,且满足,则的值为( )A. B. C. D. 【答案】B【

2、解析】是锐角,且,所以也为锐角,所以.故选B.点睛:在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法为配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和差的公式展开求值即可,再利用公式求解前,需将每一个三角函数值确定下来,尤其是要利用角的终边确定好正负.练习4. 已知, ,则=( )A. B. C. D. 【答案】D练习5. 已知, ,且, ,则的值为_【答案】【解析】,22.0,0,20,22,cos(2).又0且sin ,cos,cos 2cos(2)cos(2)cossin(2)sin .又cos 212sin2,sin2.又,sin .2.降幂公式

3、的灵活应用例2. 已知是第一象限的角,若,则等于( )A. B. C. D. 【答案】C【防陷阱措施】当幂比较高时,注意先使用平方关系把幂降下来练习13.“1”的变通例3若=,则=A. B. C. 1 D. 【答案】A【解析】=.故选A练习1已知.(1)求的值;(2)求的值.【答案】(1)-3(2)1【解析】试题分析:(1)利用两角和的正切函数化简求解即可(2)利用二倍角公式以及同角三角函数基本关系式化简求解即可4.特殊角的替换作用例4. 等于( )A. B. C. D. 【答案】C【解析】,故选C。练习1A. B. -1 C. D. 1【答案】D【解析】,故选:D.5.角的一致性例5. 的值

4、是( )A. B. C. D. 【答案】D练习1=_【答案】-1【解析】因为,所以.所以原式为-1.答案为-1.练习2_.【答案】【解析】故答案为练习3_【答案】【解析】 由,及,可得,所以.练习4_【答案】【解析】,.故答案为: 练习5. 求值: _【答案】4【解析】 故答案为4练习6_【答案】点睛:解答本题的关键是借助题设中角度的特征,先将切化弦,再运用三角变换公式及二倍角的正弦余弦公式进行运算,进而达到化简的目的。练习7化简的值为_【答案】【解析】原式 ,故答案为.练习8求的值.【答案】2.【解析】试题分析:利用题意结合所给三角函数式的特征构造两角和差正余弦公式计算可得三角函数式的值为2

5、.试题解析:原式 6.辅助角公式的灵活应用例6. 已知,则的最大值为( )A. 1 B. C. 2 D. 【答案】C7.正切公式的灵活应用例7. A. B. C. D. 【答案】D【解析】 所以 所以原式等于故选D【防陷阱措施】巧妙应用两角和差的正切公式,找到和与乘积的关系练习1在数1和2之间插入个正数,使得这个数构成递增等比数列,将这个数的乘积记为,令, , _【答案】【解析】设在数和之间插入个正数,使得这个数构成递增等比数列为,则,即为此等比数列的公比, , ,由,又 , , , ,故答案为.练习2_【答案】【解析】, ,,故答案为.练习3_【答案】8【解析】注意到可化为.项证明一般结论如

6、下: ,由于,故原式.8.正切变两弦例8的值为( )A. B. C. 1 D. 2【答案】C【解析】 ,故选C.【防陷阱措施】本题的解题关键是:1.切化弦;2.辅助角公式;3.利用二倍角公式和诱导公式求解.练习1( )A. B. C. D. 1【答案】D【解析】故选D.9. 与的关系例9. 已知,则的值为( )A. B. C. D.【答案】B.【解析】练习1已知, ,则_【答案】【解析】由题意可得: , ,因为所以舍去,所以,所以, ,故答案为.三高考真题演练1.【2016高考新课标2理数】若,则( )(A) (B) (C) (D)【答案】D【解析】考点:三角恒等变换. 【名师点睛】三角函数的

7、给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系2.【2015高考新课标1,理2】 =( )(A) (B) (C) (D)【答案】D【解析】原式= =,故选D.【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20与160之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.3.【2015高考重庆,理9】若,则()A、1 B、2 C、3 D、4【答案】C【解析】由已知,

8、选C.【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用4.【2015陕西理6】“”是“”的( )A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件【答案】A【考点定位】1、二倍角的余弦公式;2、充分条件与必要条件【名师点晴】本题主要考查的是二倍角的余弦公式和充分条件与必要条件,属于容易题解题时一定要注意时

9、,是的充分条件,是的必要条件,否则很容易出现错误充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化5.【2017课标II,理14】函数()的最大值是 。【答案】1【解析】试题分析:化简三角函数的解析式:,由自变量的范围:可得:,当时,函数取得最大值1。【考点】 三角变换,复合型二次函数的最值。【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法。一般从:开口方向;对称轴位置;判别式;端点函数值符号四个方面分析。

10、6.【2017北京,理12】在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,=_.【答案】【解析】试题分析:因为和关于轴对称,所以,那么,这样.【考点】1.同角三角函数;2.诱导公式;3.两角差的余弦公式.【名师点睛】本题考查了角的对称的关系,以及诱导公式,常用的一些对称关系包含,与关于轴对称,则 ,若与关于 轴对称,则 ,若与关于原点对称,则 .7.【2017江苏,5】 若 则 .【答案】 【解析】故答案为【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键

11、是找出已知式与待求式之间的联系及函数的差异.一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.8.【2015江苏高考,8】已知,则的值为_.【答案】3【解析】【考点定位】两角差正切公式【名师点晴】善于发现角之间的差别与联系,合理对角拆分,完成统一角和角与角转换的目的是三角函数式的求值的常用方法. 三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的

12、关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角9.【2015高考四川,理12】 .【答案】.【解析】法一、.法二、.法三、.【考点定位】三角恒等变换及特殊角的三角函数值.有.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.10.【2015高考浙江,理11】函数的最小正周期是 ,单调递减区间是 【答案】,.【解析】【考点定位】1.三角恒等变形;2.三角函数的性质【名师点睛】本题考查了三角恒等变形与函数的性质,属于中档题,首先利用二倍角的降幂变形对的表达式作等价变形,其次利用辅助角公式化为形如的形式,再由正弦函数的性质即可得到最小正周期与单调递减区间,三角函数是高考的热点问题,常考查的知识点有三角恒等变形,正余弦定理,单调性周期性等.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3