ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.89MB ,
资源ID:368914      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-368914-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012山东省各地高三一模理科数学分类汇编7:圆锥曲线.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012山东省各地高三一模理科数学分类汇编7:圆锥曲线.doc

1、2012山东省各地高三一模数学理分类汇编:圆锥曲线【2012山东济宁一模理】10.已知抛物线的焦点与双曲线的一个焦点重合,则以此抛物线的焦点为圆心,双曲线的离心率为半径的圆的方程是A.B.C.D.【答案】A【2012潍坊一模理】10直线4h一4yk=0与抛物线y2=x交于A、B两点,若,则弦AB的中点到直线x+1/2=0的距离等于A7/4 B2 C.9/4 D4【答案】C【2012潍坊一模理】13双曲线的离心率为2,则该双曲线的渐近线方程为 。【答案】【2012临沂一模理】11.设椭圆和双曲线的公共焦点分别为,为这两条曲线的一个交点,则的值为(A)3 (B) (C) (D)【答案】A【解析】双

2、曲线的焦点为,所以椭圆中的,所以椭圆方程为,不妨设点P为第一象限的交点,根据双曲线和椭圆的定义可知,即,所以,选A.【2012枣庄市高三一模理】13若双曲线的离心率为2,则实数k的值为 。【答案】【2012德州高三一模理】10.已知抛物线与双曲线有相同的焦点F,点A是两曲线的交点,且AF轴,则双曲线的离心率为( ) A B C D【答案】B【2012泰安市高三一模理】16.F1、F2为双曲线C:(0,b0)的焦点,A、B分别为双曲线的左、右顶点,以F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,且满足MAB=30,则该双曲线的离心率为 .【答案】【2012烟台一模理】5.已知为抛物线上

3、一个动点,为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是A5 B8 C D 【答案】D【2012济南高三一模理】3物线的焦点坐标是 ABCD 【答案】D【2012日照市高三一模理】(11)已知又曲线(a0,b0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为 (A)y= (B)y= (C)y= (D)y=【答案】D【2012日照市高三一模理】21(本小题满分12分) 设椭圆的左、右焦点分别为F1、F2,上顶点为A,离心率e=,在x轴负半轴上有一点B,且 (I)若过A、B、F2三点的圆恰好与直线相切,求椭圆C的方程; (II)在(I)的条件下,

4、过右焦点F2作斜率为k的直线与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由。【答案】(21)解:(I)由题意,得,所以 2分又由于,所以F1为BF2的中点,所以所以的外接圆圆心为,半径又过A、B、F2三点的圆与直线相切,所以解得a=2,所求椭圆方程为 4分(II)有(I)知F22(1,0)设的方程为:将直线方程与椭圆方程联立 6分设交点为M(x1,y1),N(x2,y2),因为3+4k20则 8分若存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,由于菱形对角线垂直,所以又10分由已

5、知条件知故存在满足题意的点P且m的取值范围是 12分【2012济南高三一模理】11点、分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于、两点,若为锐角三角形,则该双曲线的离心率的取值范围是 A B C(1,2)D【答案】D【2012烟台一模理】22.(本小题满分14分)直线与椭圆交于,两点,已知,若且椭圆的离心率,又椭圆经过点,为坐标原点.(1)求椭圆的方程;(2)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(3)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.【答案】解:(1) 2分 椭圆的方程为 4分 (2)依题意,设的方程为 由 显然 5分 由已知得: 7

6、分 解得 8分 (3)当直线斜率不存在时,即,由已知,得 又在椭圆上, 所以 ,三角形的面积为定值.9分 当直线斜率存在时:设的方程为 必须 即 得到, 10分 , 代入整理得: 11分 12分 所以三角形的面积为定值. 14分【2012济南高三一模理】21.(本小题满分12分)已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程;(2)求的取值范围【答案】21. 解:(1)设C:1(ab0),设c0,c2a2b2,由条件知a-c,a1,bc 3分故C的方程为:y21 4分(2)当直

7、线斜率不存在时: 5分当直线斜率存在时:设l与椭圆C交点为A(x1,y1),B(x2,y2)得(k22)x22kmx(m21)0 6分(2km)24(k22)(m21)4(k22m22)0 (*) 7分x1x2, x1x2 8分3 x13x2 消去x2,得3(x1x2)24x1x20,3()2409分整理得4k2m22m2k220 m2时,上式不成立;m2时,k2, 10分k20,或高三数学(理工类)参考答案第3页(共4页)把k2代入(*)得或 或 11分综上m的取值范围为或 12分【山东省实验中学2012届高三第四次诊断考试理】12如图,在等腰梯形ABCD中,ABCD,且AB=2CD,设 ,

8、以A,B为焦点且过点D的双曲线离心率为e1,以C,DC,D为焦点且过点A的椭圆的离心率为e2,则( )A.随着兹角增大,e1增大,e1 e2为定值 B. 随着兹角增大,e1减小,e1 e2为定值C. 随着兹角增大,e1增大,e1 e2也增大 D. 随着兹角增大,e1减小,e1 e2也减小【答案】B【山东省实验中学2012届高三第四次诊断考试理】22. (本小题满分14分)如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点.()求曲线C1和C2所在的椭圆和抛物线的方程;()过F2作一条与x轴不垂直的直线,分

9、别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.【答案】22. ()2分4分()6分8分12分14分【2012青岛高三一模理】14. 已知双曲线的渐近线方程为,则它的离心率为 .【答案】【2012青岛高三一模理】22(本小题满分14分)已知椭圆:的左焦点,若椭圆上存在一点,满足以椭圆短轴为直径的圆与线段相切于线段的中点()求椭圆的方程;()已知两点及椭圆:,过点作斜率为的直线交椭圆于两点,设线段的中点为,连结,试问当为何值时,直线过椭圆的顶点?() 过坐标原点的直线交椭圆:于、两点,其中在第一象限,过作轴的垂线,垂足

10、为,连结并延长交椭圆于,求证:.【答案】22(本小题满分14分)解:()连接为坐标原点,为右焦点),由题意知:椭圆的右焦点为因为是的中位线,且,所以所以,故2分在中,即,又,解得所求椭圆的方程为4分 () 由()得椭圆:设直线的方程为并代入整理得:由得: 5分设则由中点坐标公式得:6分当时,有,直线显然过椭圆的两个顶点; 7分当时,则,直线的方程为此时直线显然不能过椭圆的两个顶点;若直线过椭圆的顶点,则即所以,解得:(舍去)8分若直线过椭圆的顶点,则即所以,解得:(舍去) 9分综上,当或或时, 直线过椭圆的顶点10分()法一:由()得椭圆的方程为11分根据题意可设,则则直线的方程为过点且与垂直

11、的直线方程为并整理得:又在椭圆上,所以所以即、两直线的交点在椭圆上,所以14分法二:由()得椭圆的方程为根据题意可设,则,所以直线,化简得所以因为,所以,则12分所以,则,即14分【2012淄博市高三一模理】11设双曲线的半焦距为,直线过两点,若原点到的距离为,则双曲线的离心率为A或2 B2 C或 D【答案】B【2012淄博市高三一模理】21(本题满分12分)在平面直角坐标系内已知两点、,若将动点的横坐标保持不变,纵坐标扩大到原来的倍后得到点,且满足.()求动点所在曲线的方程;()过点作斜率为的直线交曲线于、两点,且,又点关于原点的对称点为点,试问、四点是否共圆?若共圆,求出圆心坐标和半径;若

12、不共圆,请说明理由.【答案】21解()设点的坐标为,则点的坐标为,依据题意,有1分动点所在曲线的方程是3分()因直线过点,且斜率为,故有5分联立方程组,消去,得6分设、,可得,于是.7分又,得即而点与点关于原点对称,于是,可得点8分若线段、的中垂线分别为和,则有9分联立方程组,解得和的交点为10分因此,可算得所以、四点共圆,且圆心坐标为半径为12分【2012德州高三一模理】22(本小题满分l4分) 设椭圆C:的一个顶点与抛物线:的焦点重合,F1、F2分别是椭圆的左、右焦点,离心率,过椭圆右焦点F2的直线与椭圆C交于M、N两点 (I)求椭圆C的方程; ()是否存在直线,使得,若存在,求出直线的方程;若不存在,说明理由; ()若AB是椭圆C经过原点O的弦,MNAB,求的值【答案】【2012泰安市高三一模理】21.(本小题满分12分)已知椭圆(b0)与抛物线有共同的焦点F,且两曲线在第一象限的交点为M,满足(I)求椭圆的方程;(II)过点P(0,1)的直线与椭圆交于A、B两点,满足,求直线的方程.【答案】

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3