1、数列求和授课提示:对应学生用书第329页A组基础保分练1已知数列an的通项公式是an2n3,则其前20项和为()A380B400C420 D440解析:令数列an的前n项和为Sn,则S20a1a2a202(1220)323420答案:C2已知数列an满足a11,an1则其前6项之和是()A16 B20C33 D120解析:由已知得a22a12,a3a213,a42a36,a5a417,a62a514,所以S6123671433答案:C3化简Snn(n1)2(n2)2222n22n1的结果是()A2n1n2 B2n1n2C2nn2 D2n1n2解析:因为Snn(n1)2(n2)2222n22n1
2、,2Snn2(n1)22(n2)2322n12n,所以得,Snn(222232n)n22n1,所以Sn2n1n2答案:D4(2021重庆一调)已知数列an满足an,则a1()AB CD解析:由题知,数列an满足an,所以数列的通项公式为,所以a111答案:A5数列an,bn满足a1b11,an1an2,nN,则数列ban的前n项和为()A(4n11) B(4n1)C(4n11) D(4n1)解析:因为an1an2,a1b11,所以数列an是等差数列,数列bn是等比数列,an12(n1)2n1,bn12n12n1,数列ban的前n项和为ba1ba2banb1b3b5b2n120222422n2(
3、4n1)答案:D6已知数列an的首项a13,前n项和为Sn,an12Sn3,nN设bnlog3an,则数列的前n项和Tn的取值范围为()A BC D解析:由an12Sn3,可得当n2时,有an2Sn13,两式相减得an1an2(SnSn1)2an(n2),故an13an(n2)又当n1时,a22S132a133a1,所以数列an是首项为3,公比为3的等比数列,故an3n所以bnlog3ann,所以所以Tn,Tn,得Tn,化简整理得Tn,因为0,所以Tn,又Tn1Tn0,所以数列Tn是递增数列,所以(Tn)minT1,所以Tn,故Tn的取值范围是答案:C7若数列an的通项公式是an(1)n(3n
4、2),则a1a2a10_解析:a1a2a3a4a5a6a7a8a9a10147101316192225285315答案:158(2020高考全国卷)数列an满足an2(1)nan3n1,前16项和为540,则a1_解析:法一:因为an2(1)nan3n1,所以当n为偶数时,an2an3n1,所以a4a25,a8a617,a12a1029,a16a1441,所以a2a4a6a8a10a12a14a1692因为数列an的前16项和为540,所以a1a3a5a7a9a11a13a1554092448因为当n为奇数时,an2an3n1,所以a3a12,a7a514,a11a926,a15a1338,所
5、以(a3a7a11a15)(a1a5a9a13)80由得a1a5a9a13184又a3a12,a5a38a110,a7a514a124,a9a720a144,a11a926a170,a13a1132a1102,所以a1a110a144a1102184,所以a17法二:同法一得a1a3a5a7a9a11a13a15448当n为奇数时,有an2an3n1,由累加法得an2a13(135n)(1n)n2n,所以an2n2na1所以a1a3a5a7a9a11a13a15a18a1392448,解得a17答案:79(2021大同调研)在数列an中,a13,an2an1n2(n2,且nN)(1)求a2和a
6、3的值;(2)证明:数列ann是等比数列,并求an的通项公式;(3)求数列an的前n项和Sn解析:(1)a13,a22a1226,a32a23213(2)证明:an2an1n2,n2,ann2(an1n1),n2又a114,ann是以4为首项,2为公比的等比数列ann42n12n1,an2n1n(3)Sn2212322n(n1)2n1n22(2n1)2n210(2021宁德二检)已知数列an的前n项和Snn22kn(kN),Sn的最小值为9(1)确定k的值,并求数列an的通项公式;(2)设bn(1)nan,求数列bn的前2n1项和T2n1解析:(1)由已知得Snn22kn(nk)2k2,因为k
7、N,则当nk时,(Sn)mink29,故k3所以Snn26n因为Sn1(n1)26(n1)(n2),所以anSnSn1(n26n)(n1)26(n1)2n7(n2)当n1时,S1a15,满足an2n7,综上,an2n7(2)依题意,得bn(1)nan(1)n(2n7),则T2n1531135(1)2n(4n7)(1)2n12(2n1)75(222)n个52nB组能力提升练1已知数列an是等比数列,Sn为数列an的前n项和,且a33,S39(1)求数列an的通项公式;(2)设bnlog2,且bn为递增数列,若cn,求证:c1c2c3cn1解析:(1)设数列an的公比为q,当q1时,符合条件,a1
8、a33,an3,当q1时,所以解得an12综上,an3或an12(2)证明:若an3,则bn0,与题意不符,所以an12所以a2n3123,bnlog2log222n2n,cn,c1c2c3cn112(2021合肥调研)已知等差数列an,a212,a524,数列bn满足b14,bn1bnan(nN)(1)求数列an,bn的通项公式;(2)求使得成立的最小正整数n的值解析:(1)设等差数列an的公差为d,则a5a23d12,d4,ana2(n2)d4n4,bn1bn4n4,bnb1(b2b1)(b3b2)(bnbn1)4(414)(424)4(n1)44412(n1)4(n1)2n22n(n1)
9、,b14也适合an4n4,bn2n22n(nN)(2),即,解得n16,满足条件的最小正整数n的值为17C组创新应用练1(2021长春联考)已知等差数列an的前n项和为Sn,公差d0,a6和a8是函数f(x)ln xx28x的极值点,则S8()A38B38C17 D17解析:因为f(x)ln xx28x,所以f(x)x8,令f(x)0,解得x或x又a6和a8是函数f(x)的极值点,且公差d0,所以a6,a8,所以解得所以S88a1d38答案:A2(2021合肥调研)设数列an的前n项和为Sn,4Sn(2n1)an1(nN)定义数列bn如下:对于正整数m,bm是使不等式anm成立的所有n的最小值
10、,则数列bn的前60项的和为()A960 B930C900 D840解析:由4Sn(2n1)an1,得当n2时,4Sn1(2n1)an11,两式相减,得4an(2n1)an(2n1)an1,即(2n3)an(2n1)an1,所以,所以又4S14a1(21)a11,解得a11,所以an2n1(n2),又a11也适合,所以an2n1(nN)由anm,得2n1m,所以n,所以满足条件anm的n的最小值为大于等于的整数,所以bm,所以数列bn的前60项和为960答案:A3已知数列an,若an1anan2(nN),则称数列an为“凸数列”已知数列bn为“凸数列”,且b11,b22,则数列bn的前2 019项和为_解析:由“凸数列”的定义及b11,b22,得b33,b41,b52,b63,b71,b82,所以数列bn是周期为6的周期数列,且b1b2b3b4b5b60,于是数列bn的前2 019项和等于b1b2b34答案:4