ImageVerifierCode 换一换
格式:DOC , 页数:27 ,大小:393KB ,
资源ID:365806      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-365806-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《大高考》2016高考数学文(全国通用)二轮复习专题训练:五年高考 专题3 第2节导数的应用 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《大高考》2016高考数学文(全国通用)二轮复习专题训练:五年高考 专题3 第2节导数的应用 WORD版含答案.doc

1、考点一导数与函数的单调性1(2015陕西,9)设f(x)xsin x,则f(x)()A既是奇函数又是减函数 B既是奇函数又是增函数C是有零点的减函数 D是没有零点的奇函数解析f(x)xsin x的定义域为R,关于原点对称,且f(x)xsin(x)xsin xf(x),故f(x)为奇函数又f(x)1sin x0恒成立,所以f(x)在其定义域内为增函数,故选B.答案B2(2014新课标全国,11)若函数f(x)kxln x在区间(1,)单调递增,则k的取值范围是()A(,2 B(,1C2,) D1,)解析因为f(x)kxln x,所以f(x)k.因为f(x)在区间(1,)上单调递增,所以当x1时,

2、f(x)k0恒成立,即k在区间(1,)上恒成立因为x1,所以01,所以k1.故选D.答案D3(2013浙江,8)已知函数yf(x)的图象是下列四个图象之一,且其导函数yf(x)的图象如图所示,则该函数的图象是()解析由导函数图象知,函数f(x)在1,1上为增函数当x(1,0)时,f(x)由小到大,则f(x)图象的增长趋势由缓到快,当x(0,1)时f(x)由大到小,则f(x)的图象增长趋势由快到缓,故选B.答案B4(2015新课标全国,21)已知f(x)ln xa(1x)(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a2时,求a的取值范围解(1)f(x)的定义域为(0,),

3、f(x)a.若a0,则f(x)0,所以f(x)在(0,)上单调递增若a0,则当x时,f(x)0;当x时,f(x)0.所以f(x)在上单调递增,在上单调递减(2)由(1)知,当a0时,f(x)在(0,)无最大值;当a0时,f(x)在x取得最大值,最大值为flnaln aa1.因此f2a2等价于ln aa10.令g(a)ln aa1,则g(a)在(0,)上单调递增,g(1)0.于是,当0a1时,g(a)0;当a1时,g(a)0.因此,a的取值范围是(0,1)5(2015天津,20)已知函数f(x)4xx4,xR.(1)求f(x)的单调区间;(2)设曲线yf(x)与x轴正半轴的交点为P,曲线在点P处

4、的切线方程为yg(x),求证:对于任意的实数x,都有f(x)g(x);(3)若方程f(x)a(a为实数)有两个实数根x1,x2,且x1x2,求证:x2x14.(1)解由f(x)4xx4,可得f(x)44x3.当f(x)0,即x1时,函数f(x)单调递增;当f(x)0,即x1时,函数f(x)单调递减所以,f(x)的单调递增区间为(,1),单调递减区间为(1,)(2)证明设点P的坐标为(x0,0),则x04,f(x0)12.曲线yf(x)在点P处的切线方程为yf(x0)(xx0),即g(x)f(x0)(xx0)令函数F(x)f(x)g(x),即F(x)f(x)f(x0)(xx0),则F(x)f(x

5、)f(x0)由于f(x)4x34在(,)上单调递减,故F(x)在(,)上单调递减,又因为F(x0)0,所以当x(,x0)时,F(x)0,当x(x0,)时,F(x)0,所以F(x)在(,x0)上单调递增,在(x0,)上单调递减,所以对于任意的实数x,F(x)F(x0)0,即对于任意的实数x,都有f(x)g(x)(3)证明由(2)知g(x)12(x4)设方程g(x)a的根为x2,可得x24.因为g(x)在(,)上单调递减,又由(2)知g(x2)f(x2)ag(x2),因此x2x2.类似地,设曲线yf(x)在原点处的切线方程为yh(x),可得h(x)4x.对于任意的x(,),有f(x)h(x)x40

6、,即f(x)h(x)设方程h(x)a的根为x1,可得x1.因为h(x)4x在(,)上单调递增,且h(x1)af(x1)h(x1),因此x1x1,由此可得x2x1x2x14.6(2015广东,21)设a为实数,函数f(x)(xa)2|xa|a(a1)(1)若f(0)1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a2时,讨论f(x)在区间(0,)内的零点个数解(1)f(0)a2|a|a2a|a|a,因为f(0)1,所以|a|a1,当a0时,|a|aaa01,显然成立;当a0,则有|a|a2a1,所以a,所以0a,综上所述,a的取值范围是a.(2)f(x)对于u1x2(2a1)x,其对称轴

7、为xaa,开口向上,所以f(x)在(,a)上单调递减,综上,f(x)在(a,)上单调递增,在(,a)上单调递减,(3)由(2)得f(x)在(a,)上单调递增,在(0,a)上单调递减,所以f(x)minf(a)aa2.()当a2时,f(x)minf(2)2,f(x)令f(x)0,即f(x)(x0),因为f(x)在(0,2)上单调递减,所以f(x)f(2)2,而y在(0,2)上单调递增,y2时,f(x)minf(a)aa2,当x(0,a)时,f(0)2a4,f(a)aa2,而y在x(0,a)上单调递增,当xa时,y,下面比较f(a)aa2与的大小,因为aa20所以f(a)aa22,yf(x)与y有

8、两个交点,综上,当a2时,f(x)有一个零点x2;当a2,yf(x)与y有两个零点7(2014安徽,20)设函数f(x)1(1a)xx2x3,其中a0.(1)讨论f(x)在其定义域上的单调性;(2)当x0,1时,求f(x)取得最大值和最小值时的x的值解(1)f(x)的定义域为(,),f(x)1a2x3x2.令f(x)0,得x1,x2,x1x2,所以f(x)3(xx1)(xx2)当xx1或xx2时,f(x)0;当x1xx2时,f(x)0.故f(x)在(,x1)和(x2,)内单调递减,在(x1,x2)内单调递增(2)因为a0,所以x10,x20.当a4时,x21,由(1)知,f(x)在0,1上单调

9、递增,所以f(x)在x0和x1处分别取得最小值和最大值当0a4时,x21.由(1)知,f(x)在0,x2上单调递增,在x2,1上单调递减,因此f(x)在xx2处取得最大值又f(0)1,f(1)a,所以当0a1时,f(x)在x1处取得最小值;当a1时,f(x)在x0和x1处同时取得最小值;当1a4时,f(x)在x0处取得最小值8(2014广东,21)已知函数f(x)x3x2ax1(aR)(1)求函数f(x)的单调区间;(2)当a0时,试讨论是否存在x0,使得f(x0)f.解(1)f(x)x22xa开口向上,方程x22xa0的判别式44a4(1a),若a1,则0,f(x)x22xa0恒成立,f(x

10、)在R上单调递增若a1,则0,方程x22xa0有两个不同的实数根,x11,x21,当xx1或xx2时,f(x)0;当x1xx2时,f(x)0,f(x)的单调递增区间为(,1)和(1,),单调递减区间为(1,1)综上所述,当a1时,f(x)在R上单调递增;当a0,b0,d0Ba0,b0,c0Ca0,b0,d0Da0,b0,c0,d0,可排除D;其导函数f(x)3ax22bxc且f(0)c0,可排除B;又f(x)0有两不等实根,且x1x20,所以a0.故选A.答案A2(2013福建,12)设函数f(x)的定义域为R,x0(x00)是f(x)的极大值点,以下结论一定正确的是()AxR,f(x)f(x

11、0)Bx0是f(x)的极小值点Cx0是f(x)的极小值点Dx0是f(x)的极小值点解析x0是f(x)的极大值点,而不一定是最大值点,A错;yf(x)与yf(x)的图象关于y轴对称,x0应为f(x)一个极大值点,B错;yf(x)与yf(x)图象关于x轴对称,则x0为f(x)的极小值点,C错,故选D.答案D3(2012陕西,9)设函数f(x)ln x,则()Ax为f(x)的极大值点Bx为f(x)的极小值点Cx2为f(x)的极大值点Dx2为f(x)的极小值点解析f(x),当0x2时,f(x)0;当x2时,f(x)0,所以x2为f(x)的极小值点,故选D.答案D4(2011浙江,10)设函数f(x)a

12、x2bxc(a,b,cR),若x1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是()解析令g(x)f(x)ex,则g(x)f(x)exf(x)ex,x1为函数g(x)的一个极值点,g(1)f(1)e1f(1)e10.f(1)f(1)D选项中,f(1)0,f(1)f(1)0,这与图象不符答案D5(2015山东,20)设函数f(x)(xa)ln x,g(x). 已知曲线yf(x) 在点(1,f(1)处的切线与直线2xy0平行(1)求a的值;(2)是否存在自然数k,使得方程f(x)g(x)在(k,k1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(3)设函数m(x

13、)minf(x),g(x)(minp,q表示p,q中的较小值),求m(x)的最大值解(1)由题意知,曲线yf(x)在点(1,f(1)处的切线斜率为2,所以f(1)2,又f(x)ln x1,所以a1.(2)k1时,方程f(x)g(x)在(1,2)内存在唯一的根设h(x)f(x)g(x)(x1)ln x,当x(0,1时,h(x)0.又h(2)3ln 2ln 8110,所以存在x0(1,2),使得h(x0)0.因为h(x)ln x1,所以当x(1,2)时,h(x)10,当x(2,)时,h(x)0,所以当x(1,)时,h(x)单调递增,所以k1时,方程f(x)g(x)在(k,k1)内存在唯一的根(3)

14、由(2)知方程f(x)g(x)在(1,2)内存在唯一的根x0.且x(0,x0)时,f(x)g(x),x(x0,)时,f(x)g(x),所以m(x)当x(0,x0)时,若x(0,1,m(x)0;若x(1,x0),由m(x)ln x10,可知0m(x)m(x0);故m(x)m(x0)当x(x0,)时,由m(x),可得x(x0,2)时,m(x)0,m(x)单调递增;x(2,)时,m(x)0,m(x)单调递减;可知m(x)m(2),且m(x0)m(2)综上可得,函数m(x)的最大值为.6(2015浙江,20)设函数f(x)x2axb(a,bR)(1)当b1时,求函数f(x)在1,1上的最小值g(a)的

15、表达式;(2)已知函数f(x)在1,1上存在零点,0b2a1,求b的取值范围解(1)当b1时,f(x)1,故对称轴为直线x. 当a2时,g(a)f(1)a2.当2a2时,g(a)f1.当a2时,g(a)f(1)a2.综上,g(a)(2)设s,t为方程f(x)0的解,且1t1,则由于0b2a1,因此s(1t1)当0t1时,st,由于0和94,所以b94.当1t0时,st,由于20和30,所以3b0.故b的取值范围是3,947(2014天津,19)已知函数f(x)x2ax3(a0),xR.(1)求f(x)的单调区间和极值;(2)若对于任意的x1(2,),都存在x2(1,),使得f(x1)f(x2)

16、1.求a的取值范围解(1)由已知,有f(x)2x2ax2(a0)令f(x)0,解得x0或x.当x变化时,f(x),f(x)的变化情况如下表:x(,0)0f(x)00f(x)0所以,f(x)的单调递增区间是;单调递减区间是(,0),.当x0时,f(x)有极小值,且极小值f(0)0;当x时,f(x)有极大值,且极大值f.(2)由f(0)f0及(1)知,当x时,f(x)0;当x时,f(x)0.设集合Af(x)|x(2,),集合B.则“对于任意的x1(2,),都存在x2(1,),使得f(x1)f(x2)1”等价于AB.显然,0B.下面分三种情况讨论:(1)当2,即0a时,由f0可知,0A,而0B,所以

17、A不是B的子集(2)当12,即a时,有f(2)0,且此时f(x)在(2,)上单调递减,故A(,f(2),因而A(,0);由f(1)0,有f(x)在(1,)上的取值范围包含(,0),则(,0)B.所以AB.(3)当1,即a时,有f(1)0,且此时f(x)在(1,)上单调递减,故B,A(,f(2),所以A不是B的子集综上,a的取值范围是.8(2013新课标全国,20)已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值解(1)f(x)ex(axab)2x4.由已知得f(0)4,f(0)4

18、.故b4,ab8.从而a4,b4.(2)由(1)知,f(x)4ex(x1)x24x,f(x)4ex(x2)2x44(x2).令f(x)0得xln 2或x2.从而当x(,2)(ln 2,)时,f(x)0;当x(2,ln 2)时,f(x)0.故f(x)在(,2),(ln 2,)上单调递增,在(2,ln 2)上单调递减当x2时,函数f(x)取得极大值,极大值为f(2)4(1e2)考点三导数的综合应用1(2014湖南,9)若0x1x21,则()Aex2ex1ln x2ln x1 Bex2ex1ln x2ln x1Cx2ex1x1ex2 Dx2ex1x1ex2解析构造函数f(x)exln x,则f(x)

19、ex,故f(x)exln x在(0,1)上有一个极值点,即f(x)exln x在(0,1)上不是单调函数,无法判断f(x1)与f(x2)的大小,故A、B错;构造函数g(x),则g(x),故函数g(x)在(0,1)上单调递减,故g(x1)g(x2),x2ex1x1ex2,故选C.答案C2(2014新课标全国,12)已知函数f(x)ax33x21,若f(x)存在唯一的零点x0,且x00,则a的取值范围是()A(2,) B(1,)C(,2) D(,1)解析由题意知f(x)3ax26x3x(ax2),当a0时,不满足题意当a0时,令f(x)0,解得x0或x,当a0时,f(x)在(,0),上单调递增,在

20、 上单调递减又f(0)1,此时f(x)在(,0)上存在零点,不满足题意;当a0时,f(x)在,(0,)上单调递减,在上单调递增,要使f(x)存在唯一的零点x0,且x00,则需f0,即a310,解得a2,故选C.答案C3(2015新课标全国,21)设函数f(x)e2xaln x.(1)讨论f(x)的导函数f(x)零点的个数;(2)证明:当a0时,f(x)2aaln.(1)解f(x)的定义域为(0,),f(x)2e2x(x0)当a0时,f(x)0,f(x)没有零点当a0时,因为e2x单调递增,单调递增,所以f(x)在(0,)上单调递增又f(a)0,当b满足0b且b时,f(b)0时,f(x)存在唯一

21、零点(2)证明由(1),可设f(x)在(0,)的唯一零点为x0,当x(0,x0)时,f(x)0.故f(x)在(0,x0)上单调递减,在(x0,)上单调递增,所以当xx0时,f(x)取得最小值,最小值为f(x0)由于2e2x00,所以f(x0)2ax0aln2aaln.故当a0时,f(x)2aaln.4(2015福建,22)已知函数f(x)ln x.(1)求函数f(x)的单调递增区间;(2)证明:当x1时,f(x)x1;(3)确定实数k的所有可能取值,使得存在x01,当x(1,x0)时,恒有f(x)k(x1)解(1)f(x)x1,x(0,)由f(x)0得解得0x.故f(x)的单调递增区间是.(2

22、)令F(x)f(x)(x1),x(0,)则有F(x).当x(1,)时,F(x)0,所以F(x)在1,)上单调递减,故当x1时,F(x)F(1)0,即当x1时,f(x)x1.(3)由(2)知,当k1时,不存在x01满足题意当k1时,对于x1,有f(x)x1k(x1),则f(x)k(x1),从而不存在x01满足题意当k1时,令G(x)f(x)k(x1),x(0,),则有G(x)x1k.由G(x)0得,x2(1k)x10.解得x10,x21.当x(1,x2)时,G(x)0,故G(x)在1,x2)内单调递增从而当x(1,x2)时,G(x)G(1)0,即f(x)k(x1)综上,k的取值范围是(,1)5(

23、2015浙江,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y(其中a,b为常数)模型(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.请写出公路l长度的函数解析式f(t),并写出其定义域;当t为何值时,公路l的长度最短

24、?求出最短长度解(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5)将其分别代入y,得解得(2)由(1)知,y(5x20),则点P的坐标为,设在点P处的切线l交x,y轴分别于A,B点,y,则l的方程为y(xt),由此得A,B.故f(t),t5,20设g(t)t2,则g(t)2t.令g(t)0,解得t10.当t(5,10)时,g(t)0,g(t)是减函数;当t(10,20)时,g(t)0,g(t)是增函数从而,当t10时,函数g(t)有极小值,也是最小值,所以g(t)min300,此时f(t)min15.答:当t10时,公路l的长度最短,最短长度为15千米6(2015湖南,21)已

25、知a0,函数f(x)aexcos x(x0,)记xn为f(x)的从小到大的第n(nN*)个极值点(1)证明:数列f(xn)是等比数列;(2)若对一切nN*,xn|f(xn)|恒成立,求a的取值范围解(1)f(x)aexcos xaexsin xaexcos.令f(x)0,由x0,得xm,即xm,mN*.而对于cos,当kZ时,若2kx2k,即2kx2k,则cos0.若2kx2k,即2kx2k,则cos0.因此,在区间与上,f(x)的符号总相反于是当xm(mN*)时,f(x)取得极值,所以xnn(nN*)此时,f(xn)aencos(1)n1en.易知f(xn)0,而e是常数,故数列f(xn)是

26、首项为f(x1)e,公比为e的等比数列(2)对一切nN*,xn|f(xn)|恒成立,即nen恒成立,亦即恒成立(因为a0)设g(t)(t0),则g(t).令g(t)0得t1.当0t1时,g(t)0,所以g(t)在区间(0,1)上单调递减;当t1时,g(t)0,所以g(t)在区间(1,)上单调递增因为x1(0,1),且当n2时,xn(1,),xnxn1,所以g(xn)minming(x1),g(x2)minge.因此,xn|f(xn)|恒成立,当且仅当e.解得ae.故a的取值范围是.7(2014陕西,21)设函数f(x)ln x,mR.(1)当me(e为自然对数的底数)时,求f(x)的极小值;(

27、2)讨论函数g(x)f(x)零点的个数;(3)若对任意ba0,1恒成立,求m的取值范围解(1)由题设,当me时,f(x)ln x,则f(x),当x(0,e),f(x)0,f(x)在(0,e)上单调递减,当x(e,),f(x)0,f(x)在(e,)上单调递增,xe时,f(x)取得极小值f(e)ln e2,f(x)的极小值为2.(2)由题设g(x)f(x)(x0),令g(x)0,得mx3x(x0)设(x)x3x(x0),则(x)x21(x1)(x1),当x(0,1)时,(x)0,(x)在(0,1)上单调递增;当x(1,)时,(x)0,(x)在(1,)上单调递减x1是(x)的唯一极值点,且是极大值点

28、,因此x1也是(x)的最大值点(x)的最大值为(1).又(0)0,结合y(x)的图象(如图),可知当m时,函数g(x)无零点;当m时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点;当m0时,函数g(x)有且只有一个零点综上所述,当m时,函数g(x)无零点;当m或m0时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点(3)对任意的ba0,1恒成立,等价于f(b)bf(a)a恒成立(*)设h(x)f(x)xln xx(x0),(*)等价于h(x)在(0,)上单调递减由h(x)10在(0,)上恒成立,得mx2x(x0)恒成立,m(对m,h(x)0仅在x时成立),m的

29、取值范围是.8(2014新课标全国,21)设函数f(x)aln xx2bx(a1),曲线yf(x)在点(1, f(1)处的切线斜率为0.(1) 求b;(2)若存在x01,使得f(x0),求a的取值范围解(1)f(x)(1a)xb.由题设知f(1)0,解得b1.(2)f(x)的定义域为(0,),由(1)知,f(x)aln xx2x,f(x)(1a)x1(x)(x1)若a,则1,故当x(1,)时,f(x)0,f(x)在(1,)单调递增所以,存在x01,使得f(x0)的充要条件为f(1),即1,解得1a1.若a1,则1,故当x时,f(x)0;当x时,f(x)0.f(x)在单调递减,在单调递增所以,存

30、在x01,使得f(x0)的充要条件为f.而faln,所以不合题意若a1,则f(1)1.综上,a的取值范围是(1,1)(1,)9(2013陕西,21)已知函数f(x)ex,xR.(1)求f(x)的反函数的图象上点(1,0)处的切线方程;(2)证明:曲线yf(x)与曲线yx2x1有唯一公共点;(3)设ab,比较f与的大小,并说明理由(1)解f(x)的反函数为g(x)ln x,设所求切线的斜率为k,g(x),kg(1)1.于是在点(1,0)处切线方程为yx1.(2)证明法一曲线yex与yx2x1公共点的个数等于函数(x)exx2x1零点的个数(0)110,(x)存在零点x0.又(x)exx1,令h(

31、x)(x)exx1,则h(x)ex1,当x0时,h(x)0,(x)在(,0)上单调递减;当x0时,h(x)0,(x)在(0,)上单调递增(x)在x0有唯一的极小值(0)0,即(x)在R上的最小值为(0)0.(x)0(当且仅当x0时等号成立),(x)在R上是单调递增的(x)与R上有唯一的零点故曲线yf(x)与yx2x1有唯一的公共点法二ex0,x2x10,曲线yex与yx2x1公共点的个数等于曲线y与y1公共点的个数,设(x),则(0)1,即x0时,两曲线有公共点又(x)0(当且仅当x0时等号成立),(x)在R上单调递减(x)在y1有唯一的公共点故曲线yf(x)与yx2x1有唯一的公共点(3)解feee(ba)设函数u(x)ex2x(x0),则u(x)ex2220,u(x)0(当且仅当x0时等号成立)u(x)单调递增当x0时,u(x)u(0)0.令x,则得ee(ba)0,又0,f.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3