ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:463KB ,
资源ID:365385      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-365385-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高考数学一轮复习 第九章 9.3 平行关系核心考点 精准研析训练 理(含解析)北师大版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高考数学一轮复习 第九章 9.3 平行关系核心考点 精准研析训练 理(含解析)北师大版.doc

1、第九章核心考点精准研析考点一直线、平面平行的基本问题1.如图,P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC与BD的交点,下面说法错误的是()A.OQ平面PCDB.PC平面BDQC.AQ平面PCDD.CD平面PAB2.已知a,b表示直线,表示平面,则下列推理正确的是()A.=a,babB.=a,abb且bC.a,b,a,bD.,=a,=bab3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为.【解析】1.选C.因为O为平行四边形ABCD对角线的交点,所以AO=OC,又Q为PA的中点,所以QOPC.由线面平行的判定定理,可知A、B正确,又四边形

2、ABCD为平行四边形,所以ABCD,故CD平面PAB,故D正确.2.选D.选项A中,=a,b,则a,b可能平行也可能相交,故A不正确;选项B中,=a,ab,则可能b且b,也可能b在平面或内,故B不正确;选项C中,a,b,a,b,根据面面平行的判定定理,再加上条件ab=A,才能得出,故C不正确;选项D为面面平行性质定理的符号语言.3.因为平面ABFE平面CDHG,又平面EFGH平面ABFE=EF,平面EFGH平面CDHG=HG,所以EFHG.同理EHFG,所以四边形EFGH是平行四边形.答案:平行四边形直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2

3、)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.【秒杀绝招】直接法解T1,因为Q是AP的中点,故AQ平面PCD =P,所以AQ平面PCD是错误的.考点二直线、平面平行的判定与性质【典例】1.在三棱锥S-ABC中,ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB平面DEFH,那么四边形DEFH的面积为.2.在直三棱柱ABC-A1B1C1中,ABC为正三角形,点D在棱BC上,且CD=3BD,点E,F分

4、别为棱AB,BB1的中点.求证:A1C平面DEF.世纪金榜导学号【解题导思】序号联想解题1由直线SB平面DEFH,联想到利用线面平行的性质,判定四边形DEFH的形状,进而得到其面积.2求证A1C平面DEF,只要设法在平面DEF上找到与A1C平行的直线即可,因为CD=3BD,故联想到连接A1B,在BA1C中由比例关系证明平行关系.【解析】1.取AC的中点G,连接SG,BG.易知SGAC,BGAC,SGBG=G,故AC平面SGB,所以ACSB.因为SB平面DEFH,SB平面SAB,平面SAB平面DEFH=HD,则SBHD.同理SBFE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,

5、从而得HFACDE,且HF=AC=DE,所以四边形DEFH为平行四边形.又ACSB,SBHD,DEAC,所以DEHD,所以四边形DEFH为矩形,其面积S=HFHD=.答案:2.如图,连接AB1,A1B,交于点H,A1B交EF于点K,连接DK,因为ABB1A1为矩形,所以H为线段A1B的中点,因为点E,F分别为棱AB,BB1的中点,所以点K为线段BH的中点,所以A1K=3BK,又因为CD=3BD,所以A1CDK,又A1C平面DEF,DK平面DEF,所以A1C平面DEF.1.利用判定定理判定直线与平面平行,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考

6、虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a,b,aba).(3)利用面面平行的性质(,aa;,a,aa).1.如图所示,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF平面AB1C,则线段EF的长度为.【解析】在正方体ABCD-A1B1C1D1中,AB=2,所以AC=2.又E为AD中点,EF平面AB1C,EF平面ADC,平面ADC平面AB1C=AC,所以EFAC,所以F为DC中点,所以EF=AC=.答案:2.如图所示,已知四棱锥P-A

7、BCD,BCAD,PC=AD=2DC=2CB,E为PD的中点.证明:CE平面PAB.【证明】设PA的中点为F,连接EF,FB.因为E,F分别为PD,PA的中点,所以EFAD,且EF=AD.又因为BCAD,BC=AD,所以EFBC,且EF=BC,所以四边形BCEF为平行四边形,所以CEBF,又BF平面PAB,CE平面PAB,所以CE平面PAB.【一题多解微课】解决本题还可以采用以下方法:扫码听名师讲解方法一:分别延长AB,DC交于点F,连接PF,BC=AD,则FC=CD,又ED=EP,则ECPF,因为EC平面PAB,PF平面PAB,所以EC平面PAB.方法二:取AD的中点M,连接EM,CM,EM

8、PA,EM平面PAB,PA平面PAB,EM平面PAB,又BCAD=AM,四边形ABCM为平行四边形,则CMAB.CM平面PAB,AB平面PAB.CM平面PAB,EMCM=M,则平面ECM平面PAB,因为CE平面ECM,所以CE平面PAB.考点三面面平行的判定与性质及平行的综合问题命题精解读1.考什么:(1)考查面面平行的判定与性质定理的应用.(2)考查直线、平面平行的综合问题.(3)考查直观想象、逻辑推理、数学运算的核心素养.2.怎么考:以柱、锥等几何体为载体,考查证明线线、线面、面面平行.3.新趋势:考查作已知几何体的截面或求截面面积问题.学霸好方法1.证明面面平行的方法(1)面面平行的定义

9、.(2)面面平行的判定定理.(3)垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的性质相互转化.2.交汇问题:常联系柱、锥等几何体命题,考查平行、垂直或空间角.面面平行的判定与性质【典例】1.如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面.(2)平面EFA1平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH是A1B1C1的中位线,所以GHB1C1.又因为B1C1BC,所以GHBC,所以B,C,

10、H,G四点共面.(2)因为E,F分别是AB,AC的中点,所以EFBC.因为EF平面BCHG,BC平面BCHG,所以EF平面BCHG.又G,E分别为A1B1,AB的中点,A1B1AB且A1B1=AB,所以A1GEB,A1G=EB,所以四边形A1EBG是平行四边形,所以A1EGB.又因为A1E平面BCHG,GB平面BCHG,所以A1E平面BCHG.又因为A1EEF=E,A1E,EF平面EFA1,所以平面EFA1平面BCHG.2.如图,在三棱柱ABC-A1B1C1中,B1A1A=C1A1A,AA1=AC,P,Q分别为棱AA1,AC的中点.在平面ABC内过点A作AM平面PQB1交BC于点M,写出作图步

11、骤,但不要求证明.世纪金榜导学号【解析】如图,在平面ABB1A1内,过点A作ANB1P交BB1于点N,连接BQ,在BB1Q中,作NHB1Q交BQ于点H,连接AH并延长交BC于点M,则AM为所求作的直线.平行关系的综合应用【典例】如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA底面ABCD,在侧面PBC内,有BEPC于E,且BE=a,试在AB上找一点F,使EF平面PAD.世纪金榜导学号【解析】在平面PCD内,过E作EGCD交PD于G,连接AG,在AB上取点F,使AF=EG,因为EGCDAF,EG=AF,所以四边形FEGA为平行四边形,所以FEAG.又AG平面PAD,FE平面PAD,

12、所以EF平面PAD.所以F即为所求的点.又PA平面ABCD,所以PABC,又BCAB,所以BC平面PAB.所以PBBC.所以PC2=BC2+PB2=BC2+AB2+PA2.设PA=x则PC=,由PBBC=BEPC得:a=a,所以x=a,即PA=a,所以PC=a.又CE=a,所以=,所以=,即GE=CD=a,所以AF=a.故点F是AB上靠近B点的一个三等分点.1.如图,平面平面平面,两条直线a,b分别与平面,相交于点A,B,C和点D,E,F.已知AB=2 cm,DE=4 cm,EF=3 cm,则AC的长为 cm.【解析】因为平面平面平面,两条直线a,b分别与平面,相交于点A,B,C和点D,E,F

13、,过D作直线平行于a交于M,交于N.连接AD,BM,CN,ME,NF,所以ADBMCN,MENF,所以=,因为AB=2 cm,DE=4 cm,EF=3 cm,所以=,解得BC= cm,所以AC=AB+BC=2+=(cm).答案:2.如图,已知点P是平行四边形ABCD所在平面外一点,点M,N分别是AB,PC的中点.(1)求证:MN平面PAD.(2)在PB上确定一个点Q,使平面MNQ平面PAD.【解析】(1)如图,取PD的中点H,连接AH,NH,由点N是PC的中点,知NHDC,NH=DC.由点M是AB的中点,知AMDC,AM=DC,所以NHAM,NH=AM,即四边形AMNH是平行四边形.所以MNAH.又因为MN平面PAD,AH平面PAD,所以MN平面PAD.(2)若平面MNQ平面PAD,则应有MQPA,因为点M是AB中点,所以点Q是PB的中点.在四面体ABCD中,M,N分别是面ACD、BCD的重心,则四面体的四个面中与MN平行的是_.【解析】如图,连接AM并延长交CD于E,连接BN并延长交CD于F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,由=,得MNAB,因此,MN平面ABC且MN平面ABD.答案:平面ABC、平面ABD

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3