1、小题必练5:曲线运动(1)曲线运动的条件;(2)运动的合成与分解;(3)抛体运动的规律。例1(2020全国卷16)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高0.5h。若摩托车经过a点时的动能为E1,它会落到坑内c点。c与a的水平距离和高度差均为h;若经过a点时的动能为E2,该摩托车恰能越过坑到达b点。等于()A. 20B. 18C. 9.0D. 3.0【答案】B【解析】有题意可知当在a点动能为E1时,有E1mv12,根据平抛运动规律有hgt12,hv1t1;当在a点时动能为E2时,有E2mv22,hgt22,3hv2t2,联
2、立解得,故选B。【点睛】本题主要考查平抛运动的规律和动能的计算公式,知道平抛运动可以分解为水平方向的直线运动和竖直方向的自由落体运动。例2(2019全国卷19)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其vt图象如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。则() A第二次滑翔过程中在竖直方向上的位移比第一次的小B第二次滑翔过程中在水平方向上的位移比第一次的大C第一次滑翔过程中在竖直方向上的平均加速度比第一次的大D竖直方向速度大小为v1时,第二次滑翔在竖直
3、方向上所受阻力比第一次的大【答案】BD【解析】根据vt图线与横轴所围图形的面积表示位移,可知第二次滑翔过程中在竖直方向上的位移比第一次的大,A错误;根据vt图线的斜率表示加速度,综合分析可知,第二次滑翔过程中在竖直方向上的平均加速度比第一次的小,C错误;第二次滑翔过程中在竖直方向的位移比第一次的大,又运动员每次滑翔过程中竖直位移与水平位移的比值相同(等于倾斜雪道与水平面夹角的正切值),故第二次滑翔过程中在水平方向上的位移比第一次的大,B正确;竖直方向上的速度大小为v1时,根据vt图线的斜率表示加速度可知,第二次滑翔过程中在竖直方向上的加速度比第一次的小,由牛顿第二定律有mgfma,可知第二次滑
4、翔过程中在竖直方向上所受阻力比第一次的大,D正确。【点评】本题考查曲线运动知识和利用数形结合处理物理问题的能力,解答本题的关键是正确理解vt图象的物理意义。1(多选)质量为2 kg的质点在xOy平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图所示,下列说法正确的是()A质点的初速度为5 m/sB质点所受的合外力为3 N,做匀加速曲线运动C2 s末质点速度大小为6 m/sD2 s内质点的位移大小约为12 m【答案】ABD【解析】由x方向的速度图象可知,在x方向的加速度为1.5 m/s2,受力Fx3 N,由y方向的位移图象可知在y方向做匀速直线运动,速度为vy4 m/s,受力Fy0.因此
5、质点的初速度为5 m/s,A选项正确;受到的合外力为3 N,显然,质点初速度方向与合外力方向不在同一条直线上,B选项正确;2 s末质点速度应该为v m/s2 m/s,C选项错误;2 s内x方向上位移大小xvxtat29 m,y方向上位移大小y8 m,合位移大小l m12 m,D选项正确。2(多选)如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,通过两个滑轮后挂上重物M。C点与O点距离为L,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度缓慢转至水平(转过了90角),此过程中下列说
6、法正确的是()A重物M做匀速直线运动B重物M做匀变速直线运动C重物M的最大速度是LD重物M的速度先增大后减小【答案】CD【解析】与杆垂直的速度v是C点的实际速度,vT是细绳的速度,即重物M的速度。设vT与v的夹角是,则vTvcos ,开始时减小,则vT增大;当杆与细绳垂直(0)时,重物M的速度最大,为vmaxL,然后再减小,C、D正确。3(多选)饲养员在池塘边堤坝边缘A处以水平速度v0往鱼池中抛掷鱼饵颗粒。堤坝截面倾角为53。坝顶离水面的高度为5 m,g取10 m/s2,不计空气阻力(sin 530.8,cos 530.6),下列说法正确的是()A若平抛初速度v05 m/s,则鱼饵颗粒不会落在
7、斜面上B若鱼饵颗粒能落入水中,平抛初速度v0越大,落水时速度方向与水平面的夹角越小C若鱼饵颗粒能落入水中,平抛初速度v0越大,从抛出到落水所用的时间越长D若鱼饵颗粒不能落入水中,平抛初速度v0越大,落到斜面上时速度方向与斜面的夹角越小【答案】AB【解析】鱼饵颗粒落地时间t s1 s,刚好落到水面时的水平速度为v m/s3.75 m/s5 m/s,当平抛初速度v05 m/s时,鱼饵颗粒不会落在斜面上,A正确;由于落到水面的竖直速度vygt10 m/s,平抛初速度越大,落水时速度方向与水平面的夹角越小,B正确;鱼饵颗粒抛出时的高度一定,落水时间一定,与初速度v0无关,C错误;设颗粒落到斜面上时位移
8、方向与水平方向夹角为,则53,tan ,即2tan 53,可见,落到斜面上的颗粒速度与水平面夹角是常数,即与斜面夹角也为常数,D错误。4如图所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O点,OA、OB分别与水流方向平行和垂直,且。若水流速度不变,两人在静水中游速相等,则他们所用时间 t甲、t乙的大小关系为()At甲t乙 D无法确定【答案】C【解析】设水速为v0,人在静水中的速度为v,x。对甲,OA阶段人对地的速度为(vv0),所用时间t1;AO阶段人对地的速度为(vv0),所用时间t2。所以甲所用时间t甲t1t2。对乙,OB阶段和BO阶段的实际速度v为v和v
9、0的合成,如图所示。由几何关系得,实际速度v,故乙所用时间t乙。1,即t甲t乙,故C正确。5如图所示,一根长为L的轻杆OA,O端用铰链固定,轻杆靠在一个高为h的物块上,某时刻杆与水平方向的夹角为,物块向右运动的速度为v,则此时A点速度为()A BC D【答案】C【解析】如图所示,根据运动的合成与分解可知,接触点B的实际运动为合运动,可将B点运动的速度vBv沿垂直于杆和沿杆的方向分解成v2和v1,其中v2vBsin vsin 为B点做圆周运动的线速度,v1vBcos 为B点沿杆运动的速度。当杆与水平方向夹角为时,OB,由于B点的线速度为v2vsin OB,所以,所以A的线速度vAL,选项C正确。
10、6(多选)如图所示,B球在水平面内做半径为R的匀速圆周运动,竖直平台与轨迹相切且高度为R,当B球运动到切点时,在切点正上方的A球水平飞出,速度大小为,g为重力加速度大小,要使B球运动一周内与A球相遇,则B球的速度大小为()A B C D2【答案】AB【解析】A球平抛运动的时间t,水平位移大小xv0tR,A球的落点在圆周上,从上向下看有两种可能,A球水平位移与直径的夹角均为30。若在C点相遇,B球转过的角度为,则B球的速度大小为vB,A正确;若在D点相遇,B球转过的角度为,则B球的速度大小为vB,B正确。7军事演习中,M点的正上方离地H高处的蓝军飞机以水平速度v1投掷一颗炸弹攻击地面目标,反应灵
11、敏的红军的地面高炮系统同时在M点右方地面上N点以速度v2斜向左上方发射拦截炮弹,两弹恰在M、N连线的中点正上方相遇爆炸,不计空气阻力,则发射后至相遇过程()A两弹飞行的轨迹重合B初速度大小关系为v1v2C拦截弹相对攻击弹做匀速直线运动D两弹相遇点一定在距离地面H高度处【答案】C【解析】两弹在M、N连线的中点正上方相遇,只能说明末位置相同,不能说明运动轨迹重合,故A错误。由于两弹恰在M、N连线的中点正上方相遇,说明它们的水平位移大小相等,又由于运动的时间相同,所以它们在水平方向上的速度相同,即v2cos v1,为v2与水平方向的夹角,所以v2v1,故B错误。两弹都只受到重力,都做匀变速运动,加速
12、度相同,所以拦截弹相对攻击弹做匀速直线运动,故C正确。根据题意只知道两弹运动时间相同,但不知道拦截炮弹竖直方向初速度的具体值,所以不能判断两弹相遇点距离地面的高度,所以D错误。8(多选)如图所示,A、B、C三点在同一个竖直平面内,且在同一直线上,一小球若以初速度v1从A点水平抛出,恰好能通过B点,从A点运动到B点所用时间为t1,到B点时速度与水平方向的夹角为1,落地时的水平位移为x1;若以初速度v2从A点水平抛出,恰好能通过C点,从A点运动到C点所用时间为t2,到C点时速度与水平方向的夹角为2,落地时的水平距离为x2。已知AB间水平距离是BC间水平距离的2倍,则()Av1v223Bt1t2Ct
13、an 1tan 223Dx1x2【答案】BD【解析】由于A、B、C三点在同一个竖直平面内,且在同一直线上,所以竖直方向的位移和水平方向上位移比值一定相等;设ABC的连线与水平方向之间的夹角为,则tan ,解得t,则落在ABC的连线上时竖直方向上的分速度vygt2v0tan 。设速度与水平方向的夹角为,有tan 2tan ,知小球到达B点与C点时,速度与水平方向的夹角与初速度无关,则速度与水平方向的夹角相同,故C错误。AB间水平距离与AC间水平距离之比为23;由几何关系可知,小球到达B点与C点时,竖直方向的位移之比为,又ygt2,解得y,所以,可得,故A错误;联立得,故B正确;两个小球在竖直方向
14、都做自由落体运动,所以运动的时间是相等的,水平方向的位移xv0t,联立可得,故D正确。9(多选)如图所示,水平地面有一个坑,其竖直截面为半圆形,ab为沿水平方向的直径,在a点分别以初速度v0(已知)、2v0、3v0沿ab方向抛出三个石子并击中坑壁,且以v0、2v0抛出的石子做平抛运动的时间相等。设以v0和3v0抛出的石子做平抛运动的时间分别为t1和t3,击中坑壁瞬间的速度分别为v1和v3,则()A可以求出t1和t3B不能求出t1和t3,但能求出它们的比值C可以求出v1和v3D不能求出v1和v3,但能求出它们的比值【答案】AC【解析】做平抛运动的物体在任意时间的瞬时速度的反向延长线一定通过此时水
15、平位移的中点。如图1所示,做平抛运动的物体在任意位置处,设其末速度方向与水平方向的夹角为,位移与水平方向的夹角为,则有tan 2tan 。以v0、2v0抛出的石子做平抛运动的时间相等,说明竖直分位移相等,设分别落在A、B点,如图2所示。以3v0抛出的石子其运动轨迹与AB延长线的交点在b点的正下方。根据几何关系有ABab。对于落在A点的石子,设ab2R,根据几何关系可求得竖直位移与水平位移之比,根据上述推论求竖直分速度与水平分速度之比,从而求出竖直分速度,再合成求出v1,由公式vyat求t1。以3v0抛出的石子落在c点,根据数学知识可写出其轨迹方程和圆方程,再求得c点的坐标,与落在A点的石子下落
16、位移比较,可求得落在c点时的竖直分速度,从而求出v3。由公式vyat求t3。故A、C正确,B、D错误。10 如图所示,一个长直轻杆两端分别固定一个小球A和B,两球的质量均为m,两球半径忽略不计,杆AB的长度为l,现将杆AB竖直靠放在竖直墙上,轻轻振动小球B,使小球B在水平地面上由静止向右运动,求当A球沿墙下滑距离为时A、B两球的速度vA和vB的大小。(不计一切摩擦)【解析】A、B两球速度的分解情况如图所示,由题意知,30,由运动的合成与分解得:vAsin vBcos 又A、B组成的系统机械能守恒:mgmvmv解得:vA,vB。11如图所示,足够长的斜面与水平面夹角37,斜面上有一质量M3 kg
17、的长木板,斜面底端挡板高度与木板厚度相同。m1 kg的小物块从空中某点以v03 m/s水平抛出,抛出同时木板由静止释放,小物块下降h0.8 m掉在木板前端,碰撞时间极短可忽略不计,碰后瞬间物块垂直斜面分速度立即变为零。碰后两者向下运动,小物块恰好在木板与挡板碰撞时在挡板处离开木板。已知木板与斜面间动摩擦因素0.5,木板上表面光滑,木板与挡板每次碰撞均无能量损失,g10 m/s2,求:(1)碰前瞬间小物块速度大小和方向。(2)木板至少多长小物块才没有从木板后端离开木板?(3)木板从开始运动到最后停在斜面底端的整过过程中通过路程多大?【解析】(1)小物块平抛运动,有:hgt2,vygt,v2vy2
18、v02解得:t0.4 s,vy4 m/s,v5 m/s由得37,即速度方向与斜面垂直。(2)木板下滑,由牛顿第二运动定律得:Mgsin Mgcos Mav1at1解得:a2 m/s2,v10.8 m/s小物块掉到木板上后速度变为0,然后向下运动,直到与木板速度相同过程:对小物块有:mgsin ma1对木板有:Mgsin (Mm)gcos Ma2速度相同时:a1tv1a2t解得:a16 m/s2,a2m/s2,t0.15 sLminv1ta2t2a1t20.06 m。(3)小物块平抛过程木板下移的距离:x1v1t10.16 m两者相碰到小物块离开,木板运动的距离:x2a1t22v1t2a2t22解得:t20.3 s,x20.27 m此时木板速度:v2v1a2t21 m/s木板与挡板碰后全程生热:QMgcos x3Mv22解得:x30.125 m可见木板在斜面上通过路程:xx1x2x30.555 m。