1、第6 讲对数与对数函数基础巩固题组(建议用时:40分钟)一、选择题1设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()AlogablogcblogcaBlogablogcalogcbCloga(bc)logablogacDloga(bc)logablogac解析logablogcalogablogcb,故选B.答案B2(2014日照模拟)函数ylg|x1|的图象是()解析当x1时,函数无意义,故排除B,D.又当x2或0时,y0,所以A项符合题意答案A3(2014通州模拟)若x(e1,1),aln x,b2ln x,cln3x,则()Aabc BcabCbac Dbca解析x,aln
2、x(1,0),b2ln xln x2.又yln x是增函数,x2x,ba.caln3xln xln x(ln2x1)0,ca,bac,故选C.答案C 4函数f(x)loga(ax3)在1,3上单调递增,则a的取值范围是()A(1,) B(0,1)C(0,) D(3,)解析由于a0,且a1,uax3为增函数,若函数f(x)为增函数,则f(x)logau必为增函数,因此a1.又yax3在1,3上恒为正,a30,即a3,故选D.答案D5(2014长春质检)已知函数f(x)loga|x|在(0,)上单调递增,则()Af(3)f(2)f(1) Bf(1)f(2)f(3)Cf(2)f(1)f(3) Df(
3、3)f(1)f(2)解析因为f(x)loga|x|在(0,)上单调递增,所以a1,f(1)f(2)f(3)又函数f(x)loga|x|为偶函数,所以f(2)f(2),所以f(1)f(2)f(3)答案B二、填空题6函数ylog(3xa)的定义域是,则a_.解析要使函数有意义,则3xa0,即x,a2.答案27(2014重庆卷)函数f(x)log2log(2x)的最小值为_解析显然x0,f(x)log2log(2x)log2xlog2(4x2)log2x(log242log2x)log2x(log2x)22.当且仅当x时,有f(x)min.答案8(2014淄博一模)已知函数f(x)为奇函数,当x0时
4、,f(x)log2x,则满足不等式f(x)0的x的取值范围是_解析由题意知yf(x)的图象如图所示,则f(x)0的x的取值范围为(1,0)(1,)答案(1,0)(1,)三、解答题9已知函数f(x)lg,(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;(3)判断函数f(x)的单调性解(1)要使f(x)有意义,需满足0,即或解得1x1,故函数f(x)的定义域为(1,1)(2)由(1)知f(x)的定义域为(1,1),关于坐标原点对称,又f(x)lglgf(x),f(x)为奇函数(3)由(1)知f(x)的定义域为(1,1)设1x1x21,则f(x1)f(x2)lglglglg.1x1x2
5、1,1x1x2x2x11x1x2(x2x1)(1x1)(1x2)0,1,lg0,即f(x1)f(x2)0,f(x)在(1,1)上是减函数10设x2,8时,函数f(x)loga(ax)loga(a2x)(a0,且a1)的最大值是1,最小值是,求a的值解由题意知f(x)(logax1)(logax2)2.当f(x)取最小值时,logax.又x2,8,a(0,1)f(x)是关于logax的二次函数,函数f(x)的最大值必在x2或x8时取得若21,则a2,此时f(x)取得最小值时,x2,8,舍去若21,则a,此时f(x)取得最小值时,x22,8,符合题意,a.能力提升题组(建议用时:25分钟)11定义
6、在R上的函数f(x)满足f(x)f(x),f(x2)f(x2),且x(1,0)时,f(x)2x,则f(log220)()A1 B C1 D解析由f(x2)f(x2),得f(x)f(x4),因为4log2205,所以f(log220)f(log2204)f(4log220)f1.答案C12当0x时,4xlogax,则a的取值范围是()A. BC(1,) D(,2)解析由题意得,当0a1时,要使得4xlogax,即当0x时,函数y4x的图象在函数ylogax图象的下方又当x时,42,即函数y4x的图象过点,把点代入函数ylogax,得a,若函数y4x的图象在函数ylogax图象的下方,则需a1(如
7、图所示)当a1时,不符合题意,舍去所以实数a的取值范围是.答案B13(2015湘潭模拟)已知函数f(x)ln,若f(a)f(b)0,且0ab1,则ab的取值范围是_解析由题意可知lnln0,即ln0,从而1,化简得ab1,故aba(1a)a2a2,又0ab1,0a,故02.答案14已知函数f(x)32log2x,g(x)log2x.(1)当x1,4时,求函数h(x)f(x)1g(x)的值域;(2)如果对任意的x1,4,不等式f(x2)f()kg(x)恒成立,求实数k的取值范围解(1)h(x)(42log2x)log2x2(log2x1)22,因为x1,4,所以log2x0,2,故函数h(x)的值域为0,2(2)由f(x2)f()kg(x),得(34log2x)(3log2x)klog2x,令tlog2x,因为x1,4,所以tlog2x0,2,所以(34t)(3t)kt对一切t0,2恒成立,当t0时,kR;当t(0,2时,k恒成立,即k4t15,因为4t12,当且仅当4t,即t时取等号,所以4t15的最小值为3,综上,k(,3)