ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:214.50KB ,
资源ID:359133      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-359133-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年新教材数学人教B版必修第二册课时素养评价 5-3-2 事件之间的关系与运算 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年新教材数学人教B版必修第二册课时素养评价 5-3-2 事件之间的关系与运算 WORD版含解析.doc

1、高考资源网() 您身边的高考专家温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时素养评价 十八事件之间的关系与运算(15分钟30分)1.掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则()A.ABB.A=BC.A+B表示向上的点数是1或2或3D.AB表示向上的点数是1或2或3【解析】选C.设A=1,2,B=2,3,AB=2,AB=1,2,3,所以A+B表示向上的点数为1或2或3.2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A=两次都击中飞机,B=两次都没击中飞机,C=恰有一炮

2、弹击中飞机,D=至少有一炮弹击中飞机,下列关系不正确的是()A.ADB.BD=C.AC=DD.AB=BD【解析】选D.“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中,所以ABBD.3.打靶三次,事件Ai表示“击中i次”,i=0,1,2,3,则事件A=A1+A2+A3表示()A.全部未击中B.至少有一次击中C.全部击中D.至多有一次击中【解析】选B.事件A0,A1,A2,A3彼此互斥,且=A1+A2+A3=A,故A表示至少击中一次.4.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球

3、的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是_.【解析】摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率为1-0.42-0.28=0.3.答案:0.3【补偿训练】一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是_. 【解析】连续射击两次有以下四种情况:第一次中第二次不中,第一次不中第二次中,两次都中和两次都不中.故“至少一次中靶”的对立事件为“两次都不中靶”.答案:两次都不中靶5.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别0.3,0.2,0.1,0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具去的概率

4、为0.5,请问他有可能是乘何种交通工具去的?【解析】(1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥,故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.(2)设他不乘轮船去的概率为P,则P=1-P(A2)=1-0.2=0.8.(3)由于0.3+0.2=0.5,0.1+0.4=0.5,故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.【补偿训练】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完

5、.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所

6、有可能值,并估计Y大于零的概率.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450=-100.所以Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频

7、率为=0.8,因此Y大于零的概率的估计值为0.8.(20分钟40分)一、选择题(每小题5分,共20分.多选题全部选对得5分,选对但不全的得3分,有选错的得0分)1.袋中装有黑、白两种颜色的球各三个,现从中取出两个球.设事件P表示“取出的两球都是黑球”;事件Q表示“取出的两球都是白球”;事件R表示“取出的球中至少有一个黑球”.则下列结论正确的是()A.P与R是互斥事件B.P与Q是对立事件C.Q和R是对立事件D.Q和R是互斥事件,但不是对立事件【解析】选C.袋中装有黑、白两种颜色的球各三个,现从中取出两个球,取球的方法共有如下几类:取出的两球都是黑球;取出的两球都是白球;取出的球一黑一白.事件R包

8、括两类情况,所以事件P是事件R的子事件,故A不正确;事件Q与事件R互斥且对立,所以选项C正确,选项D不正确.事件P与事件Q互斥,但不是对立事件,所以选项B不正确.2.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是红球B.至少有一个黑球与都是黑球C.至少有一个黑球与至少有一个红球D.恰有1个黑球与恰有2个黑球【解析】选D.A中的两个事件是对立事件,不符合要求;B中的两个事件是包含关系,不是互斥事件,不符合要求;C中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D中的两个事件是互斥而不对立的两个事件.3.已知100件产品中有5件

9、次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件次品”,则下列结论正确的是()A.F与G互斥B.E与G互斥但不对立C.E,F,G任意两个事件均互斥D.E与G对立【解析】选D.由题意得事件E与事件F不可能同时发生,是互斥事件;事件E与事件G不可能同时发生,是互斥事件;当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件.故A,C错.事件E与事件G中必有一个发生,所以事件E与事件G对立,所以B错误,D正确.4.(多选)若干个人站成一排,其中不是互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站

10、排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”【解析】选BCD.排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B,C,D中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥.【补偿训练】(多选)下列说法中不正确的是()A.若事件A与事件B是互斥事件,则P(A)+P(B)=1B.若事件A与事件B满足条件:P(AB)=P(A)+P(B)=1,则事件A与事件B是对立事件C.一个人打靶时连续射击两次,则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件D.把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人,每人分得1张,则事件“甲分

11、得红牌”与事件“乙分得红牌”是互斥事件【解析】选ABC.互斥事件其含义是事件A与事件B在任何一次试验中不会同时发生,即AB=;对立事件的含义是事件A与事件B在任何一次试验中有且仅有一个发生,AB为不可能事件,且AB为必然事件,即P=0且P=1,所以只有D正确.二、填空题(每小题5分,共10分)5.同时掷两枚骰子,既不出现5点也不出现6点的概率为,则5点或6点至少出现一个的概率是_.【解析】记既不出现5点也不出现6点的事件为A,则P(A)=,5点或6点至少有一个出现的事件为B.因为AB=,AB为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.故5点或6点至少有一个出现的概率为.

12、答案:【补偿训练】甲射击一次,中靶的概率是P1,乙射击一次,中靶的概率是P2,已知,是方程x2-5x+6=0的根,且P1满足方程x2-x+=0.则甲射击一次,不中靶的概率为_;乙射击一次,不中靶的概率为_.【解析】由P1满足方程x2-x+=0知,-P1+=0,解得P1=.因为,是方程x2-5x+6=0的根,所以=6,所以P2=,因此甲射击一次,不中靶的概率为1-=,乙射击一次,不中靶的概率为1-=.答案:6.在一次随机试验中,三个事件A1,A2,A3的概率分别是0.2,0.3,0.5,则下列说法正确的是_.A1A2与A3是互斥事件,也是对立事件;A1A2A3是必然事件;P(A2A3)=0.8;

13、P(A1A2)0.5.【解析】三个事件A1,A2,A3不一定是互斥事件,故A1A2与A3不一定是互斥事件,并且P1,P(A2A3)0.8,P(A1A2)0.5,即正确.答案:三、解答题7.(10分)国家射击队的队员为在世界射击锦标赛上取得优异成绩在加紧备战,经过近期训练,某队员射击一次命中710环的概率如表所示:命中环数10987概率0.320.280.180.12求该射击队员在一次射击中:(1)命中9环或10环的概率.(2)至少命中8环的概率.(3)命中不足8环的概率.【解析】记事件“射击一次,命中i环”为Ai(i N,i10),则事件Ai之间彼此互斥.(1)设“射击一次,命中9环或10环”

14、为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件概率的加法公式得P(A)=P(A9)+P(A10)=0.28+0.32=0.6.(2)设“射击一次,至少命中8环”为事件B,那么当A8,A9,A10之一发生时,事件B发生,由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.(3)设“射击一次命中不足8环”为事件C,由于事件C与事件B互为对立事件,故P(C)=1-P(B)=1-0.78=0.22.【补偿训练】玻璃盒里装有红球、黑球、白球、绿球共12个,从中任取1球,设事件A为“取出1个红球”,事件B为“取出1个黑球”,事件

15、C为“取出1个白球”,事件D为“取出1个绿球”.已知P(A)=,P(B)=,P(C)=,P(D)=.(1)求“取出1个球为红球或黑球”的概率;(2)求“取出1个球为红球或黑球或白球”的概率.【解析】方法一:(1)因为事件A,B,C,D彼此为互斥事件,所以“取出1个球为红球或黑球”的概率为P(A+B)=P(A)+P(B)=+=.(2)“取出1个球为红球或黑球或白球”的概率为P(A+B+C)=P(A)+P(B)+P(C)=+=.方法二:(1)“取出1个球为红球或黑球”的对立事件为“取出1个球为白球或绿球”,即A+B的对立事件为C+D,所以P(A+B)=1-P(C+D)=1-P(C)-P(D)=1-=,即“取出1个球为红球或黑球”的概率为.(2)“取出1个球为红球或黑球或白球”的对立事件为“取出1个球为绿球”,即A+B+C的对立事件为D,所以P(A+B+C)=1-P(D)=1-=,即“取出1个球为红球或黑球或白球”的概率为.关闭Word文档返回原板块- 10 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3