1、4直线的方向向量和法向量的应用直线的方向向量和法向量是处理直线问题的有力工具由于直线和平面向量的学习分散在必修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析一、直线的方向向量1定义设P1,P2是直线l:AxByC0上的不同两点,那么向量以及与它平行的非零向量都称为直线l的方向向量,若P1(x1,y1),P2(x2,y2),则的坐标为(x2x1,y2y1);特别当直线l与x轴不垂直时,即x2x10,直线的斜率k存在时,那么(1,k)是它的一个方向向量;当直线l与x轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向
2、量均可表示为(B,A)2应用(1)求直线方程例1已知三角形三顶点坐标分别为A(2,3),B(7,9),C(18,9),求AB边上的中线、高线方程以及C的内角平分线方程解求中线方程由于(25,0),(16,12),那么AB边上的中线CD的方向向量为(41,12),也就是,因而直线CD的斜率为,那么直线CD的方程为y9(x18),整理得12x41y1530.求高线方程由于kAB,因而AB的方向向量为,而AB边上的高CEAB,则直线CE的方向向量为,那么高线CE的方程为y9(x18),整理得3x4y180. 求C的内角平分线方程(1,0),则C的内角平分线的方向向量为,也就是,因而内角平分线CF的方
3、程为y9(x18),整理得x3y90.点评一般地,经过点(x0,y0),与直线AxByC0平行的直线方程是A(xx0)B(yy0)0;与直线AxByC0垂直的直线方程是B(xx0)A(yy0)0.(2)求直线夹角例2已知l1:x3y150与l2:y3mx60的夹角为,求m的值解直线l1的方向向量为v1(3,1),直线l2的方向向量为v2(1,3m),l1与l2的夹角为,|cosv1,v2|,化简得18m29m20.解得m或m.点评一般地,设直线l1:yk1xb1,其方向向量为v1(1,k1),直线l2:yk2xb2,其方向向量为v2(1,k2),当1k1k20时,两直线的夹角为90;当1k1k
4、20时,设夹角为,则cos ;若设直线l1:A1xB1yC10,其方向向量为(B1,A1),直线l2:A2xB2yC20,其方向向量为(B2,A2),那么cos .二、直线的法向量1定义直线AxByC0的法向量:如果向量n与直线l垂直,则称向量n为直线l的法向量因此若直线的方向向量为v,则nv0,从而对于直线AxByC0而言,其方向向量为v(B,A),则由于nv0,于是可取n(A,B)2应用(1)判断直线的位置关系例3已知直线l1:axy2a0与直线l2:(2a1)xaya0.(1)若l1l2,求实数a的值;(2)若l1l2,求实数a的值解直线l1,l2的法向量分别为:n1(a,1),n2(2
5、a1,a),(1)若l1l2,则n1n2a(2a1)(1)a0,解得a0或a1.a0或1时,l1l2.(2)若l1l2,则n1n2,a2(2a1)(1)0.解得a1,且2.a1时,l1l2.点评一般地,设直线l1:A1xB1yC10,l2:A2xB2yC20,它们的法向量分别为n1(A1,B1),n2(A2,B2),当n1n2,即A1A2B1B20时,l1l2,反之亦然;当n1n2,即A1B2A2B10时,l1l2或l1与l2重合(2)求点到直线的距离例4已知点M(x0,y0)为直线l:AxByC0外一点求证:点M(x0,y0)到直线l的距离d.证明设P(x1,y1)是直线AxByC0上任一点,n是直线l的一个法向量,不妨取n(A,B)则M(x0,y0)到直线l:AxByC0的距离d等于向量在n方向上投影的长度,如图所示:d|cos,n|.点P(x1,y1)在直线l上,Ax1By1C0,Ax1By1C,d.点评同理应用直线的法向量可以证明平行直线l1:AxByC10与直线l2:AxByC20(A2B20且C1C2)的距离为d.证明过程如下:设P1(x1,y1),P2(x2,y2)分别为直线l1:AxByC10,直线l2:AxByC20上任意两点,取直线l1,l2的一个法向量n(A,B),则(x2x1,y2y1)在向量n上的投影的长度,就是两平行线l1、l2的距离d|cos,n|.