1、课后素养落实(四)对数运算法则(建议用时:40分钟)一、选择题1设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()AlogablogcblogcaBlogablogcalogcbCloga(bc)logablogacDloga(bc)logablogacB利用对数的换底公式进行验证,logablogcalogcalogcb,则B正确2lg 2lg lg 等于()Alg 2Blg 3 Clg 4Dlg 5A法一:lg 2lg lg (lg 25lg 16)2(lg 5lg 9)(lg 32lg 81)2lg 54lg 22lg 54lg 35lg 24lg 3lg 2.法二:lg 2l
2、g lg lglg 2.故选A3设alog32,则log382log36用a表示的形式是()Aa2B3a(1a)2C5a2Da23a1Aalog32,log382log363log322(log321)3a2(a1)a2.4计算log225log32log59的结果为()A3B4C5D6D原式6.5若x60,则的值为()A1B C2D1Alog603log604log605log60(345)1二、填空题6已知3a2,3b,则32ab_.203a2,3b,两边取对数得alog32,blog3log35,2ab2log32log35log320,32ab20.7计算100log98log4_.2
3、100log98log410lg 910lg 42.8若logablog3a4,则b的值为_81logablog3a4,所以lg b4lg 3lg 34,所以b3481三、解答题9计算下列各式的值:(1)lg lg lg .(2)lg 52lg 8lg 5lg 20(lg 2)2.解(1)原式(lg 25lg 72)lg 2lg(725)lg 2lg 72lg 2lg 7lg 5lg 2lg 5(lg 2lg 5).(2)原式2lg 52lg 2lg 5(2lg 2lg 5)(lg 2)22lg 10(lg 5lg 2)22(lg 10)2213.10已知logax3logxalogxy3(a
4、1)(1)若设xat,试用a,t表示y;(2)若当0t2时,y有最小值8,求a和x的值解(1)由换底公式,得logax3(a1),所以logay(logax)23logax3.当xat时,logaxt,所以logayt23t3.所以ya(t0)(2)由(1)知ya,因为0t2,a1,所以当t时,ymina8.所以a16,此时xa64.11已知f(x)xlog2,则f(1)f(2)f(3)f(8)的值为()A37B6 C36D9Cf(x)xlog2,f(x)f(9x)9.f(1)f(2)f(3)f(8)f(1)f(8)f(2)f(7)f(3)f(6)f(4)f(5)9436.12(多选题)若a0
5、,且a1,xR,yR,且xy0,则下列各式不恒成立的是()Alogax22logaxBlogax22loga|x|Cloga(xy)logaxlogayDloga(xy)loga|x|loga|y|ACxy0,A中,若x0,则不成立;C中,若x0,y0也不成立,故选AC13log4252log410log45log516的值是_1log4252log410log45log516log425log4100log4log4 log41612114已知函数f(x)f(f(0)3a,则a_;f(log2a)_.21f(0)3012,f(f(0)f(2)4a23a,a2,f(log2a)f(log22)f(1)2121115已知loga(x24)loga(y21)loga5loga(2xy1)(a0且a1),求log8的值解由对数的运算法则,可将等式化为loga(x24)(y21)loga5(2xy1),所以(x24)(y21)5(2xy1)整理得x2y2x24y210xy90,配方得(xy3)2(x2y)20,所以所以.所以log8log8log2321.