ImageVerifierCode 换一换
格式:DOC , 页数:29 ,大小:940KB ,
资源ID:352903      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-352903-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高考数学人教版一轮创新教学案:第7章 第5讲 直线、平面垂直的判定与性质 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高考数学人教版一轮创新教学案:第7章 第5讲 直线、平面垂直的判定与性质 WORD版含解析.doc

1、第5讲直线、平面垂直的判定与性质考纲解读掌握线线、线面、面面垂直的判定定理和性质定理,并能应用它们证明有关空间图形的垂直关系的简单命题(重点、难点)考向预测从近三年高考情况来看,本讲是高考的必考内容预测2021年将会以以下两种方式进行考查:以几何体为载体考查线面垂直的判定和性质;根据垂直关系的性质进行转化试题以解答题第一问直接考查,难度不大,属中档题型.1.直线与平面垂直判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直l性质定理垂直于同一个平面的两条直线平行ab2平面与平面垂直判定定理与性质定理文字语言图形语言符号语言判定定理一个

2、平面过另一个平面的一条垂线,则这两个平面垂直性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直l3直线和平面所成的角(1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角(2)范围:.4二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角(2)范围:0,1805必记结论(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面(2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线(3)过空间任一点有且只

3、有一条直线与已知平面垂直(4)过空间任一点有且只有一个平面与已知直线垂直(5)两平面垂直的性质定理是把面面垂直转化为线面垂直(6)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面1概念辨析(1)直线l与平面内的无数条直线都垂直,则l.()(2)垂直于同一个平面的两平面平行()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面()(4)若平面内的一条直线垂直于平面内的无数条直线,则.()答案(1)(2)(3)(4)2小题热身(1)下列命题中不正确的是()A如果平面平面,且直线l平面,则直线l平面B如果平面平面,那么平面内一定存在直线平行于平面C如果平面不垂直于平面,

4、那么平面内一定不存在直线垂直于平面D如果平面平面,平面平面,l,那么l答案A解析A错误,如图1所示,在长方体中,l,但l;B正确,设l,则内与l平行的直线都与平行;C正确,由面面垂直的判定可知;D正确,如图2所示,在平面内,作与交线的垂线m,在平面内作与的交线的垂线n,由得m,由得n,所以mn.可推出m,进而推出ml,所以l.(2)如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()AAG平面EFH BAH平面EFHCHF平面AEF DHG平面AEF答案

5、B解析根据折叠前、后AHHE,AHHF不变,AH平面EFH,B正确;过A只有一条直线与平面EFH垂直,A不正确;AGEF,EFGH,AGGHG,EF平面HAG,又EF平面AEF,平面HAG平面AEF,过H作直线垂直于平面AEF,一定在平面HAG内,C不正确;已证平面HAG平面AEF,若证HG平面AEF,只需证HGAG,已证AHHG,故HGAG不成立,所以HG与平面AEF不垂直,D不正确故选B.(3)如图,在长方体ABCDA1B1C1D1中,ABBC2,AA11,则AC1与平面A1B1C1D1所成角的正弦值为_答案解析连接A1C1,则AC1A1为AC1与平面A1B1C1D1所成的角因为ABBC2

6、,所以A1C1AC2,又AA11,所以AC13,所以sinAC1A1.(4)已知PD垂直于菱形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有_对答案4解析由于PD平面ABCD,故平面PAD平面ABCD,平面PDB平面ABCD,平面PDC平面ABCD,由于AC平面PDB,所以平面PAC平面PDB,共4对题型 一直线与平面的位置关系角度1直线与平面所成的角1(2018全国卷)在长方体ABCDA1B1C1D1中,ABBC2,AC1与平面BB1C1C所成的角为30,则该长方体的体积为()A8 B6 C8 D8答案C解析如图,在长方体ABCDA1B1C1D1中,连接BC1,

7、根据线面角的定义可知AC1B30,因为AB2,tan30,所以BC12,从而求得CC12,所以该长方体的体积为V2228.故选C.角度2直线与平面垂直的判定和性质2(2019镇江模拟)如图,在四棱锥PABCD中,底面ABCD是正方形,AC与BD交于点O,PC底面ABCD,E为PB上一点,G为PO的中点(1)若PD平面ACE,求证:E为PB的中点;(2)若ABPC,求证:CG平面PBD.证明(1)如图,连接OE,由四边形ABCD是正方形知,O为BD的中点,PD平面ACE,PD平面PBD,平面PBD平面ACEOE,PDOE,O为BD的中点,E为PB的中点(2)在四棱锥PABCD中,ABPC,四边形

8、ABCD是正方形,OCAB,PCOC,G为PO的中点,CGPO.又PC底面ABCD,BD底面ABCD,PCBD.而四边形ABCD是正方形,ACBD,AC,PC平面PAC,ACPCC,BD平面PAC,又CG平面PAC,BDCG.PO,BD平面PBD,POBDO,CG平面PBD.1求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角即为所求的角(3)把该角归结在某个三角形中,通过解三角形,求出该角如举例说明1.2证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理,这是主要证明方法如举例说明2(2)(2)利用“两平行线

9、中的一条与平面垂直,则另一条也与这个平面垂直”(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”(4)利用面面垂直的性质定理1已知一个正四棱柱的体对角线长为,且体对角线与底面所成的角的余弦值为,则该四棱柱的表面积为_答案10解析由图可知,BD,DD12,底面边长AB1,所以所求表面积为4AA1AB2AB242121210.2如图,S是RtABC所在平面外一点,且SASBSC,D为斜边AC的中点(1)求证:SD平面ABC;(2)若ABBC,求证:BD平面SAC.证明(1)如图所示,取AB的中点E,连接SE,DE,在RtABC中,D,E分别为AC,AB的中点DEBC,DEAB,SA

10、SB,SEAB.又SEDEE,AB平面SDE.又SD平面SDE,ABSD.在SAC中,SASC,D为AC的中点,SDAC.又ACABA,SD平面ABC.(2)由于ABBC,则BDAC,由(1)可知,SD平面ABC,又BD平面ABC,SDBD,又SDACD,BD平面SAC.题型 二面面垂直的判定与性质1如图,AB是O的直径,PA垂直于O所在平面,C是圆周上不同于A,B两点的任意一点,且AB2,PABC,则二面角ABCP的大小为_答案60解析因为AB为O的直径,所以ACBC,又PA平面ABC,所以PABC,可求得BCPC,所以PCA为二面角ABCP的平面角因为ACB90,AB2,PABC,所以AC

11、1,所以在RtPAC中,tanPCA.所以PCA60.结论探究在本例的条件下,二面角APBC的正切值为_答案解析如图,过A作AFPC,垂足为F,过F作FEPB,垂足为E,连接AE,由举例说明1易得BC平面PAC.又AF平面PAC,所以AFBC.又PCBCC,所以AF平面PBC.所以PBAF,又PBEF,AFEFF,所以PB平面AEF,所以PBAE,所以AEF为二面角APBC的平面角,在RtPAC中,AC1,PA,PAC90.所以tanPCA,所以PCA60,所以CF1cos60,AF1sin60.在RtPBC中,PC2,BC,PCB90,PB.由PEFPCB得,所以,所以EF,在RtAEF中,

12、tanAEF,即二面角APBC的正切值为.2如图,在四棱锥PABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:ABEF;(2)若AFEF,求证:平面PAD平面ABCD.证明(1)因为四边形ABCD是矩形,所以ABCD.又AB平面PDC,CD平面PDC,所以AB平面PDC,又AB平面ABE,平面ABE平面PDCEF,所以ABEF.(2)因为四边形ABCD是矩形,所以ABAD.因为AFEF,(1)中已证ABEF,所以ABAF.又ABAD,由点E在棱PC上(异于点C),所以点F异于点D,所以AFADA,AF,AD平面PAD,所以AB平面PAD,又

13、AB平面ABCD,所以平面PAD平面ABCD.1作二面角的平面角的方法(1)定义法:在棱上取点,分别在两面内引两条射线与棱垂直,这两条射线所成的角就是二面角的平面角如举例说明1.(2)垂线法:如图所示,作PO,垂足为O,作OAl,垂足为A,连接PA,则PAO为二面角l的平面角(3)补棱法:在求解二面角问题时,若构成二面角的两个半平面没有明确的交线,则将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法或垂线法解题(4)射影面积法:二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积时,都可利用射影面积公式求出二面角的大小(5)向量法(最常用)(6)转化为

14、线面角:如图,求l的二面角,即求AB与所成的角2证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线面垂直加以解决如举例说明2(2)如图,三棱柱ABCA1B1C1中,A1A平面ABC,ACB90,M是AB的中点,ACCBCC12.(1)求证:平面A1CM平面ABB1A1;(2)求点M到平面A1CB1的距离解(1)证明:由A1A平面ABC,CM平面ABC,得A1ACM.ACCB,M是AB的中点,ABCM.又A1A

15、ABA.CM平面ABB1A1,又CM平面A1CM,平面A1CM平面ABB1A1.(2)设点M到平面A1CB1的距离为h,由题意可知A1CCB1A1B12MC2,SA1CB1(2)22,SA1MB1S四边形ABB1A1222.由(1)可知CM平面ABB1A1,得VCA1MB1MCSA1MB1VMA1CB1hSA1CB1.点M到平面A1CB1的距离h.题型 三平面图形的翻折问题(2019南昌模拟)如图,在矩形ABCD中,AB3,BC1,E,F是边DC的三等分点现将DAE,CBF分别沿AE,BF折起,使得平面DAE、平面CBF均与平面ABFE垂直(1)若G为线段AB上一点,且AG1,求证:DG平面C

16、BF;(2)求多面体CDABFE的体积解(1)证明:如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN,因为ADDE1,ADE90,所以DMAE,且DM.因为BCCF1,BCF90,所以CNBF,且CN.因为平面DAE、平面CBF均与平面ABFE垂直,所以DM平面ABFE,CN平面ABFE,所以DMCN,因为AMAGcos45,所以AMG90,所以AMG是以AG为斜边的等腰直角三角形,故MGA45,而FBA45,则MGFB,故平面DMG平面CBF,则DG平面CBF.(2)如图,连接BE,DF,由(1)可知,DMCN,且DMCN,则四边形DMNC为平行四边形,故DCMN2.因为V多面

17、体CDABFEVDABEVBEFCDVDABE3VBDEFVDABE3VDBEF,所以V多面体CDABFE3.平面图形翻折为空间图形问题的解题关键是看翻折前后线面位置关系的变化,根据翻折的过程找到翻折前后线线位置关系中没有变化的量和发生变化的量,这些不变的和变化的量反映了翻折后的空间图形的结构特征解决此类问题的步骤为: (2019合肥二检)如图1,在平面五边形ABCDE中,ABCE,且AE2,AEC60,CDED,cosEDC.将CDE沿CE折起,使点D到P的位置,且AP,得到如图2所示的四棱锥PABCE.(1)求证:AP平面ABCE;(2)记平面PAB与平面PCE相交于直线l,求证:ABl.

18、证明(1)在CDE中,CDED,cosEDC,由余弦定理得CE2.连接AC,如图,AE2,AEC60,AC2.又AP,在PAE中,PA2AE2PE2,即APAE.同理,APAC.ACAEA,AC平面ABCE,AE平面ABCE,AP平面ABCE.(2)ABCE,且CE平面PCE,AB平面PCE,AB平面PCE.又平面PAB平面PCEl,ABl.组基础关1已知平面平面,l,点A,Al,直线ABl,直线ACl,直线m,m,则下列四种位置关系中,不一定成立的是()AABm BACm CAB DAC答案D解析如图所示,ABlm;ACl,mlACm;ABlAB,只有D不一定成立,故选D.2(2019武汉模

19、拟)已知两个平面相互垂直,下列命题:一个平面内已知直线必垂直于另一个平面内的任意一条直线一个平面内已知直线必垂直于另一个平面内的无数条直线一个平面内任意一条直线必垂直于另一个平面过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题的个数是()A1 B2 C3 D4答案B解析由题意,对于,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故错误;对于,设平面平面m,n,l,平面平面,当lm时,必有l,而n,ln,而在平面内与l平行的直线有无数条,这些直线均与n垂直,故一个平面内的己知直线必垂直于另一个平面内的无数条直线,即正确;对于,当两个平

20、面垂直时,一个平面内的任一条直线不垂直于另一个平面,故错误;对于,当两个平面垂直时,过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面,这是面面垂直的性质定理,故正确3.如图,已知六棱锥PABCDEF的底面是正六边形,PA平面ABC,PA2AB,则下列结论正确的是()APBADB平面PAB平面PBCC直线BC平面PAED直线PD与平面ABC所成的角为45答案D解析选项A,B,C显然错误PA平面ABC,PDA是直线PD与平面ABC所成的角ABCDEF是正六边形,AD2AB.tanPDA1,直线PD与平面ABC所成的角为45.故选D.4(2020江西南昌摸底)如图,在四面体ABCD中,已

21、知ABAC,BDAC,那么点D在平面ABC内的射影H必在()A直线AB上B直线BC上C直线AC上DABC内部答案A解析因为ABAC,BDAC,ABBDB,所以AC平面ABD,又AC平面ABC,所以平面ABC平面ABD,所以点D在平面ABC内的射影H必在直线AB上故选A.5如图,直三棱柱ABCA1B1C1中,侧棱长为2,ACBC1,ACB90,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1平面C1DF,则线段B1F的长为()A. B1C. D2答案A解析设B1Fx,因为AB1平面C1DF,DF平面C1DF,所以AB1DF.由已知可以得A1B1,矩形ABB1A1中,tan

22、FDB1,tanA1AB1.又FDB1A1AB1,所以.故B1F.故选A.6(2019全国卷)如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则()ABMEN,且直线BM,EN是相交直线BBMEN,且直线BM,EN是相交直线CBMEN,且直线BM,EN是异面直线DBMEN,且直线BM,EN是异面直线答案B解析解法一:取CD的中点O,连接EO,ON.由ECD是正三角形,知EOCD,又平面ECD平面ABCD,EO平面ABCD.EOON.又N为正方形ABCD的中心,ONCD.以CD的中点O为原点,方向为x轴正方向建立空间直角坐标系,如图1所示不妨设AD

23、2,则E(0,0,),N(0,1,0),M,B(1,2,0),EN2,BM ,ENBM.连接BD,BE,点N是正方形ABCD的中心,点N在BD上,且BNDN,BM,EN是DBE的中线,BM,EN必相交故选B.解法二:如图2,取CD的中点F,DF的中点G,连接EF,FN,MG,GB.ECD是正三角形,EFCD.平面ECD平面ABCD,EF平面ABCD.EFFN.不妨设AB2,则FN1,EF,EN2.EMMD,DGGF,MGEF且MGEF,MG平面ABCD,MGBG.MGEF,BG ,BM.BMEN.连接BD,BE,点N是正方形ABCD的中心,点N在BD上,且BNDN,BM,EN是DBE的中线,B

24、M,EN必相交故选B.7已知ABCA1B1C1是所有棱长均相等的直三棱柱,M是B1C1的中点,则下列命题正确的是()A在棱AB上存在点N,使MN与平面ABC所成的角为45B在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45C在棱AC上存在点N,使MN与AB1平行D在棱BC上存在点N,使MN与AB1垂直答案B解析设该直三棱柱的棱长均为a,取BC的中点P,连接MP,则MP平面ABC,点N在棱AB上,若MN与平面ABC所成角为45,即MNP45,则PNPMa,而PNmaxaa,A错误;若点N在棱AA1上,则点N在平面BCC1B1上的射影为点Q,且MQCC1,此时MN与平面BCC1B1所成角

25、即为NMQ,当NQA1Na时,NMQ45,B正确;因为AC与B1C1是异面直线,所以点N在AC上时,MN与AB1是异面直线或相交直线,不可能平行,C错误;取BC的中点K,则AK平面BCC1B1,AKMN,若MNAB1,则MN平面AB1K,此时MNB1K,当N在棱BC上时,MNB1K不可能成立,D错误,故选B.8(2019北京高考)已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_.答案若m且l,则lm(或若lm,l,则m)解析已知l,m是平面外的两条不同直线,由lm与m,不能推出l,因为l可以与平行,也可以相

26、交不垂直;由lm与l能推出m;由m与l可以推出lm.故正确的命题是或.9.如图,平面ABC平面BDC,BACBDC90,且ABACa,则AD_.答案a解析作BC的中点E,连接AE,DE,则在RtABC中,ABACa,由勾股定理得BC2AEa,且有AEBC,又平面ABC平面BDC,平面ABC平面BDCBC,且直线AE在平面ABC内,由面面垂直的性质定理得AE平面BDC,DE平面BDC内,AEDE,又在RtBCD中,点E是BC的中点,DEa,在RtADE中,AEa,由勾股定理得ADa.10(2019湖北省“四地七校”联考)现有编号为、的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至

27、少存在一个侧面与此底面互相垂直的三棱锥的所有编号是_答案解析编号为的三棱锥,其直观图可能是,侧棱VC底面ABC,则侧面VAC底面ABC,满足题意;编号为的三棱锥,其直观图可能是,侧面PBC底面ABC,满足题意;编号为的三棱锥,顶点的投影不在底面边上(如图),不存在侧面与底面垂直故答案为.组能力关1如图所示,三棱锥PABC的底面在平面内,且ACPC,平面PAC平面PBC,点P,A,B是定点,则动点C的轨迹是()A一条线段B一条直线C一个圆D一个圆,但要去掉两个点答案D解析平面PAC平面PBC,而平面PAC平面PBCPC.又AC平面PAC,且ACPC,AC平面PBC,而BC平面PBC,ACBC,点

28、C在以AB为直径的圆上,点C的轨迹是一个圆,但是要去掉A和B两点故选D.2如图,在棱长为a的正方体ABCDA1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值,则下面的四个值中不为定值的是()A点P到平面QEF的距离B三棱锥PQEF的体积C直线PQ与平面PEF所成的角D二面角PEFQ的大小答案C解析A中,因为平面QEF也就是平面A1B1CD,显然点P到平面A1B1CD的距离是定值,所以点P到平面QEF的距离为定值;B中,因为QEF的面积是定值(EF为定长,点Q到EF的距离就是点Q到CD的距离,也是定长,即底和高都是定值),再根据A的结论,即点

29、P到平面QEF的距离也是定值,所以三棱锥PQEF的高也是定值,所以三棱锥PQEF的体积是定值;C中,因为Q是动点,PQ的长不固定,而Q到平面PEF的距离为定值,所以PQ与平面PEF所成的角不是定值;D中,因为A1B1CD,Q为A1B1上任意一点,E,F为CD上任意两点,所以二面角PEFQ的大小即为二面角PCDA1的大小,为定值3(2018全国卷)已知正方体的棱长为1,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为()A. B. C. D.答案A解析根据相互平行的直线与平面所成的角是相等的,所以在正方体ABCDA1B1C1D1中,平面AB1D1与线AA1,A1B1,A1D1

30、所成的角是相等的,所以平面AB1D1与正方体的每条棱所在的直线所成角都是相等的,同理平面C1BD也满足与正方体的每条棱所在的直线所成的角都是相等的,要求截面面积最大,则截面的位置为夹在两个面AB1D1与C1BD中间的,且过棱的中点的正六边形,边长为,所以其面积为S62,故选A.4如图,在四棱锥PABCD中,PA平面ABCD,ABC是正三角形,AC与BD的交点为M,又PAAB4,ADCD,CDA120,N是CD的中点(1)求证:平面PMN平面PAB;(2)求点M到平面PBC的距离解(1)证明:在正ABC中,AB BC,在ACD中,ADCD,易证ADBCDB,所以M为AC的中点,因为N是CD的中点

31、,所以MNAD.因为PA平面ABCD,所以PAAD,因为CDA120,所以DAC30,因为BAC60,所以BAD90,即BAAD.因为PAABA,所以AD平面PAB,所以MN平面PAB.又MN平面PMN,所以平面PMN平面PAB.(2)设点M到平面PBC的距离为h,在RtPAB中,PAAB4,所以PB4,在RtPAC中,PAAC4,所以PC4,在PBC中,PB4,PC4,BC4,所以SPBC4.由ABC是正三角形,M是AC的中点,得BMAC,在RtBMC中,MC2,BM2,所以SBMC2.由VMPBCVPBMC,即4h24,解得h,所以点M到平面PBC的距离为.组素养关1(2019湖南长郡中学

32、模拟)如图,在多边形ABPCD中(图1),四边形ABCD为长方形,BPC为正三角形,AB3,BC3,现以BC为折痕将BPC折起,使点P在平面ABCD内的射影恰好在AD上(图2)(1)证明:PD平面PAB;(2)若点E在线段PB上,且PEPB,当点Q在线段AD上运动时,求三棱锥QEBC的体积解(1)证明:过点P作POAD,垂足为O.由于点P在平面ABCD内的射影恰好在AD上,PO平面ABCD.POAB.四边形ABCD为矩形,ABAD.又ADPOO,AB平面PAD,ABPD.又由AB3,PB3,可得PA3,同理PD3.又AD3,PA2PD2AD2,PAPD,且PAABA,PD平面PAB.(2)设点

33、E到底面QBC的距离为h,则VQEBCVEQBCSQBCh.由PEPB,可知,h.又SQBCBCAB33,VQEBCSQBCh3.2(2019合肥一中模拟)如图,四边形ABCD为矩形,点A,E,B,F共面,且ABE和ABF均为等腰直角三角形,且BAEAFB90.(1)若平面ABCD平面AEBF,证明:平面BCF平面ADF;(2)问在线段EC上是否存在一点G,使得BG平面CDF,若存在,求出此时三棱锥GABE与三棱锥GADF的体积之比解(1)证明:四边形ABCD为矩形,BCAB,又平面ABCD平面AEBF,BC平面ABCD,平面ABCD平面AEBFAB,BC平面AEBF,又AF平面AEBF,BC

34、AF.AFB90,即AFBF,又BC平面BCF,BF平面BCF,BCBFB,AF平面BCF,又AF平面ADF,平面BCF平面ADF.(2)BCAD,AD平面ADF,BC平面ADF.ABE和ABF均为等腰直角三角形,且BAEAFB90,FABABE45,AFBE,又AF平面ADF,BE平面ADF,BCBEB,平面BCE平面ADF.延长EB到点H,使得BHAF,又BC綊AD,连接CH,HF,易证四边形ABHF是平行四边形,HF綊AB綊CD,四边形HFDC是平行四边形,CHDF.过点B作CH的平行线,交EC于点G,即BGCHDF,又DF平面CDF,BG平面CDF,BG平面CDF,即此点G为所求的G点又BEAB2AF2BH,EGEC,又SABE2SABF,VGABEVCABEVCABFVDABFVBADFVGADF,故.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3