ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:306KB ,
资源ID:352155      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-352155-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高考数学(理)二轮总复习学案:层级二 专题六 第二讲 圆锥曲线的方程与性质 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高考数学(理)二轮总复习学案:层级二 专题六 第二讲 圆锥曲线的方程与性质 WORD版含解析.doc

1、第二讲圆锥曲线的方程与性质1(2019全国卷)若抛物线y22px(p0)的焦点是椭圆1的一个焦点,则p()A2 B3C4 D8解析:选D抛物线y22px(p0)的焦点坐标为,椭圆1的焦点坐标为.由题意得,解得p0(舍去)或p8.故选D2(2019全国卷)已知椭圆C的焦点为F1(1,0),F2(1,0),过F2的直线与C交于A,B两点若|AF2|2|F2B|,|AB|BF1|,则C的方程为()Ay21 B1C1 D1解析:选B设椭圆的标准方程为1(ab0)由椭圆的定义可得|AF1|AB|BF1|4a.|AB|BF1|,|AF2|2|F2B|,|AB|BF1|AF2|,|AF1|3|AF2|4a.

2、又|AF1|AF2|2a,|AF1|AF2|a,点A是椭圆的短轴端点,如图不妨设A(0,b),由F2(1,0),2,得B.由点B在椭圆上,得1,得a23,b2a2c22.椭圆C的方程为1.故选B3(2018全国卷)双曲线1(a0,b0)的离心率为,则其渐近线方程为()Ayx ByxCyx Dyx解析:选A双曲线1的渐近线方程为bxay0.又离心率,a2b23a2.ba(a0,b0)渐近线方程为axay0,即yx.故选A4(2019全国卷)双曲线C:1(a0,b0)的一条渐近线的倾斜角为130,则C的离心率为()A2sin 40 B2cos 40C D解析:选D由题意可得tan 130,所以e

3、.故选D5(2017全国卷)若双曲线C:1(a0,b0)的一条渐近线被圆(x2)2y24所截得的弦长为2,则C的离心率为()A2 BC D解析:选A依题意,双曲线C:1(a0,b0)的渐近线方程为bxay0.因为直线bxay0被圆(x2)2y24所截得的弦长为2,所以,所以3a23b24b2,所以3a2b2,所以e2,故选A6(2018全国卷)已知双曲线C:y21,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN为直角三角形,则|MN|()A B3 C2 D4解析:选B由已知得双曲线的两条渐近线方程为y x.设两渐近线夹角为2,则有tan ,所以30.所以M

4、ON260.又OMN为直角三角形,由于双曲线具有对称性,不妨设MNON,如图所示在RtONF中,|OF|2,则|ON|.则在RtOMN中,|MN|ON|tan 2tan 603.故选B 明 考 情 1圆锥曲线的定义、方程与性质是每年高考必考的内容以选择题、填空题的形式考查,常出现在第411题或1516题的位置,着重考查圆锥曲线的几何性质与标准方程,难度中等2圆锥曲线的综合问题多以解答题的形式考查,常作为压轴题第20题的位置,一般难度较大考点一圆锥曲线的定义及标准方程|析典例|【例】(1)(2019浉河区校级月考)椭圆1(ab0)的左、右焦点分别为F1,F2,上顶点为A,若AF1F2的面积为,且

5、F1AF24AF1F2,则椭圆方程为()Ay21 B1Cy21 D1(2)(2019宝鸡二模)已知抛物线x216y的焦点为F,双曲线1的左、右焦点分别为F1,F2,点P是双曲线右支上一点,则|PF|PF1|的最小值为()A5 B7C9 D11解析(1)椭圆1(ab0)的左、右焦点分别为F1,F2,上顶点为A,若AF1F2的面积为,可得bc,且F1AF24AF1F2,AF1F230,解得b1,c,所以a2,则椭圆方程为y21.故选C(2)如图,由双曲线1,得a24,b25,c2a2b29,则c3,则F2(3,0),|PF1|PF2|4,|PF1|4|PF2|,则|PF|PF1|PF|PF2|4,

6、连接FF2交双曲线右支于P,则此时|PF|PF2|最小等于|FF2|,F的坐标为(0,4),F2(3,0),|FF2|5,|PF|PF1|的最小值为549.故选C答案(1)C(2)C| 规 律 方 法 |1凡涉及圆锥曲线上的点到焦点距离,一般运用定义转化处理2求解圆锥曲线的标准方程的方法是“先定型,后计算”所谓“定型”,就是指确定类型,所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值,最后代入写出椭圆、双曲线、抛物线的标准方程|练题点|1(一题多解)(2019辽宁五校联考)已知双曲线过点(2,3),渐近线方程为yx,则该双曲线的标准方程是()A1 B1Cx21 D1解析:选C解

7、法一:(定义法)若双曲线的焦点在x轴上,设其标准方程为1(a0,b0),则由题意可得解得所以双曲线的标准方程为x21;若双曲线的焦点在y轴上,设其标准方程为1(a0,b0),则由题意可得该方程组无解综上,所求双曲线的标准方程为x21.解法二:(待定系数法)设双曲线的方程为1(mn0),则由题意可得解得所以所求双曲线的标准方程为x21.解法三:(待定系数法)因为双曲线的渐近线方程为yx,所以可设双曲线的方程为3x2y2(0),则由双曲线过点(2,3),可得322323,故双曲线的方程为3x2y23,其标准方程为x21.2已知抛物线y22x的焦点是F,点P是抛物线上的动点,若A(3,2),则|PA

8、|PF|的最小值为_,此时点P的坐标为_解析:将x3代入抛物线方程y22x,得y.因为2,所以点A在抛物线内部,如图所示过点P作PQl于点Q,则|PA|PF|PA|PQ|,当PAl,即A,P,Q三点共线时,|PA|PQ|最小,最小值为,即|PA|PF|的最小值为,此时点P的纵坐标为2,代入y22x,得x2,所以所求点P的坐标为(2,2)答案:(2,2)考点二圆锥曲线的几何性质|析典例|【例】(1)(2019合肥二模)已知椭圆1(ab0)的左右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2BAP,则该椭圆离心率是()A BC D(2)(20

9、19湖南四校联考)已知A,B,P是双曲线1(a0,b0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPAkPB3,则该双曲线的离心率为()A BC2 D3(3)(2019常熟模拟)已知双曲线C1:1与圆C2:x2y2b2(其中a0,b0),若在C1上存在点P,使得由点P向C2所作的两条切线互相垂直,则双曲线C1的离心率的取值范围是_解析(1)由条件知以线段F1A为直径的圆的方程为2y22,化为x2(ac)xy2ac0.直线F1B的方程为bxcybc0,联立解得P.kAP,kF2B.F2BAP,把b2c2a2代入可化为e2,又e(0,1),解得e.故选D(2)由双曲线的对

10、称性知,点A,B关于原点对称,设A(x1,y1),B(x1,y1),P(x2,y2),则1,1,又kPA,kPB,所以kPAkPB3,所以离心率e 2.(3)由题意,根据圆的性质,可知四边形PAOB是正方形,所以|OP|b;因为|OP|ba,所以,所以e;所以双曲线的离心率e的取值范围是.答案(1)D(2)C(3)| 规 律 方 法 |1椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求的值2双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得(2)用法:可得

11、或的值利用渐近线方程设所求双曲线的方程|练题点|1如图,F1、F2分别是双曲线C:1(a0,b0)的左、右焦点,A,B是双曲线C上关于坐标原点O对称的两点(点A在第一象限),直线BF1与双曲线C的另一个交点为M,且AF1BF1,|MF1|AF1|,则C的渐近线方程为()Ayx ByxCyx Dyx解析:选A连接MF2,BF2,AF2,设|MF1|m,|BF1|n,可得|AF1|m,AF1BF1,可得四边形AF2BF1为矩形,由双曲线的定义可得|AF2|m2a,|MF2|m2a,即nm2a,可得m2(m2a)24c2,(mm2a)2m2(m2a)2,解得m3a,9a2a24c24(a2b2),化

12、简可得ba,C的渐近线方程为yx,即为yx.故选A2(2019烟台一模)已知圆锥曲线C1:mx2ny21(nm0)与C2:px2qy21(p0,q0)的公共焦点为F1,F2.点M为C1,C2的一个公共点,且满足F1MF290,若圆锥曲线C1的离心率为,则C2的离心率为()A BC D解析:选BC1:1,C2:1.设a1,a2,MF1s,MF2t(st),由椭圆的定义可得st2a1,由双曲线的定义可得st2a2,解得sa1a2,ta1a2,由F1MF290,运用勾股定理,可得s2t24c2,即为aa2c2,由离心率的公式可得,2,e1,e,则e2.故选B3(2019全国卷)设F为双曲线C:1(a

13、0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2y2a2交于P,Q两点若|PQ|OF|,则C的离心率为()A BC2 D解析:选A设双曲线C:1(a0,b0)的右焦点F的坐标为(c,0)由圆的对称性及条件|PQ|OF|可知,PQ是以OF为直径的圆的直径,且PQOF.设垂足为M,连接OP,如图,则|OP|a,|OM|MP|.由|OM|2|MP|2|OP|2得22a2,故,即e.故选A考点三直线与圆锥曲线的位置关系|多角探明|命题角度一弦长问题【例1】(2019全国卷)已知抛物线C:y23x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|BF|4,求l的方

14、程;(2)若3,求|AB|.解设直线l:yxt,A(x1,y1),B(x2,y2)(1)由题设得F,故|AF|BF|x1x2.又|AF|BF|4,所以x1x2.由得9x212(t1)x4t20,则x1x2.从而,得t.所以l的方程为yx.(2)由3可得y13y2.由可得y22y2t0,所以y1y22,从而3y2y22,故y21,y13.代入C的方程得x13,x2.故|AB|.| 规 律 方 法 |求解直线被椭圆截得弦长的方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解(2)当直线的斜率存在时,斜率为k的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两个不同的点,则弦

15、长|AB|x1x2|y1y2|(k0)(3)当弦过焦点时,可结合圆锥曲线定义求解弦长如M(x0,y0)是椭圆1(ab0)上一点,则左焦半径r1aex0,右焦半径r2aex0.命题角度二弦中点问题【例2】已知椭圆E:1(ab0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点若AB的中点坐标为(1,1),则E的方程为()A1 B1C1 D1解析设A(x1,y1),B(x2,y2),代入椭圆方程得得0,0.x1x22,y1y22,kAB,0,即a22b2.又c3,a218,b29.椭圆E的方程为1.答案D| 规 律 方 法 |对于弦中点问题,常用“根与系数的关系”或“点差法”求解在用根与系数

16、的关系时,要注意前提条件0;在用“点差法”时,要检验直线与圆锥曲线是否相交|全练题点|(2019江南十校联考)已知椭圆E:1,点A,B,C都在椭圆E上,O为坐标原点,D为AB中点,且2.(1)若点C的坐标为,求直线AB的方程;(2)求证:SABC为定值解:(1)设A(x1,y1),B(x2,y2),D(x0,y0),因为2,C,所以点D的坐标为.又D为AB中点,所以x1x21,y1y2.将点A,B的坐标分别代入椭圆方程中,可得化简可得0,所以直线AB的斜率kAB,所以直线AB的方程为x2y20.(2)证明:设A(x3,y3),B(x4,y4),C(m,n),因为2,所以D.当直线AB的斜率不存在时,n0,不妨设点A在x轴下方,点B在x轴上方因为点C在椭圆上,易得C(2,0),A,B或C(2,0),A,B,此时SABC33.当直线AB的斜率存在时,n0,由(1)可得kAB,所以直线AB的方程为y,因为点C在椭圆上,所以1,即3m24n212,因此直线AB的方程为yxx,即3mx4ny60,由得3x23mx34n20,所以x3x4m,x3x41,|AB|,因为点O到直线AB的距离d,所以SABC3SOAB3.综上,SABC为定值

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3