ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:464.50KB ,
资源ID:352128      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-352128-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012届高考数学一轮精品3.3三角函数的奇偶性与单调性(考点疏理 典型例题 练习题和解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012届高考数学一轮精品3.3三角函数的奇偶性与单调性(考点疏理 典型例题 练习题和解析).doc

1、2012届高考数学一轮精品3.3三角函数的奇偶性与单调性(考点疏理+典型例题+练习题和解析) 3.3三角函数的奇偶性与单调性【知识网络】1正弦、余弦、正切函数的奇偶性、对称性;正弦、余弦、正切函数的的单调性【典型例题】例1(1) 已知,函数为奇函数,则a()(A)0(B)1(C)1(D)1(1)A 提示:由题意可知,得a=0(2)函数的单调增区间为()A BC D(2)C 提示:令可得(3)定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,则的值为 ( )A. B. C. D. (3)B 提示:(4)如果是奇函数,则 (4)由()已知函数满足以下三个条件: 在上是增函数以为最小

2、正周期是偶函数试写出一满足以上性质的一个函数解析式(5)提示:答案不唯一,如还可写成等例2判断下列函数的奇偶性(); (2 ) ; (3 ) ; (4 ) 解:(1)的定义域为,故其定义域关于原点对称,又为奇函数(2)时,而, 的定义域不关于原点对称,为非奇非偶函数。(3)的定义域为R,又 为偶函数。(4) 由得,又 ,故此函数的定义域为 ,关于原点对称,此时 既是奇函数,又是偶函数。例3已知:函数 (1)求它的定义域和值域; (2)判断它的奇偶性; (3)求它的单调区间; (4)判断它的周期性,若是周期函数,求它的最小正周期.解:(1).由 定义域为, 值域为(2).定义域不关于原点对称,函

3、数为非奇非偶函数(3)的递增区间为 递减区间为(4).是周期函数,最小正周期T.例4已知函数,求:(I) 函数的最大值及取得最大值的自变量的集合;(II) 函数的单调增区间解(I)当,即时, 取得最大值.函数的取得最大值的自变量的集合为. (II) 由题意得: 即: 因此函数的单调增区间为.【课内练习】1函数f(x)=sin(2x+)+cos(2x+)的图像关于原点对称的充要条件是 ()A=2k,kZ B=k,kZ C=2k,kZ D=k,kZ1D 提示: 令可得2在中,若函数在0,1上为单调递减函数,则下列命题正确的是(A) (B)(C) (D)2C 提示:根据所以3.同时具有性质“ 最小正

4、周期是; 图象关于直线对称; 在上是增函数”的一个函数是( ) A B C D 3D 提示:由性质(1)和(2)可排除 A和C ,再求出的增区间即可4设函数,若,则下列不等式必定成立的是 ()A B C D 4B提示:易知,且当x时,为增函数又由,得,故 |,于是5.判断下列函数奇偶性(1)是 ;(2)是 ; (3)f(x)=是 5(1)偶函数()非奇非偶函数()奇函数提示:先判断函数的定义域是否关于原点对称,然后用奇函数和偶函数的定义判断6.若是以5为周期的奇函数,且,则= 6 -4 提示:五个函数中,同时满足且的函数的序号为7提示:不满足不满足8求下列函数的单调区间.(1) (2) 解:(1).原函数变形为令,则只需求的单调区间即可.,()上即,()上单调递增,在,上即,上单调递减故的递减区间为:递增区间为:. (2)原函数的增减区间即是函数的减增区间,令由函数的图象可知:周期且 在上,即上递增, 在即在上递减故所求的递减区间为,递增区间为()已知为奇函数,且当时,() 当时,求的解析式;() 当时,求的解析式解:()当时,则,又为奇函数,所以() 当时,为奇函数,所以由()知10已知函数是上的偶函数,其图象关于点对称,且在区间上是单调函数,求的值解:由是上的偶函数,得,即,展开整理得:,对任意都成立,且,所以又,所以由的图象关于点对称,得取,得,所以,所以,即;综上所得,

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3