1、高考资源网() 您身边的高考专家课 题:l13相互独立事件同时发生的概率 (三)教学目的:1 理解独立重复试验的概念,明确它的实际意义;2引出次独立重复试验中某事件恰好发生次的概率计算公式;3了解概率计算公式与二项式定理的内在联系教学重点:次独立重复试验中某事件恰好发生次的概率计算公式教学难点:独立重复试验的判定授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2随机事件的概率:一般地,在大量重复进行同一试验时,事
2、件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件6等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件7等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概
3、率8等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A和事件B是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥11对立事件:必然有一个发生的互斥事件12互斥事件的概率的求法:如果事件彼此互斥,那么 13相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件若与是相互独立事件,则与,与,与也相互独立14相互独立事件同时发生的概率:一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积, 二、讲解新课:1独立重复试验的定义:指在同样条件下进行的,
4、各次之间相互独立的一种试验2独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率它是展开式的第项三、讲解范例:例1某气象站天气预报的准确率为,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件预报5次相当于5次独立重复试验,根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的概率答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和
5、,即 答:5次预报中至少有4次准确的概率约为0.74例2某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率,1小时内5台机床中恰有1台需要工人照管的概率,所以1小时内5台机床中至少2台需要工人照管的概率为答:1小时内5台机床中至少2台需要工人照管的概率约为点评:“至多”,“至少”问题往往考虑逆向思维法例3某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75
6、,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击次记事件“射击一次,击中目标”,则射击次相当于次独立重复试验,事件至少发生1次的概率为由题意,令,至少取5答:要使至少命中1次的概率不小于0.75,至少应射击5次四、课堂练习: 1每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) 210张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( ) 3某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( ) 4甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为,
7、比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) 5一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 (设每次命中的环数都是自然数)6一名篮球运动员投篮命中率为,在一次决赛中投10个球,则投中的球数不少于9个的概率为 7一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率为 8某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9种植某种树苗,成活率为90%,现在种植这种树苗5
8、棵,试求:全部成活的概率; 全部死亡的概率;恰好成活3棵的概率; 至少成活4棵的概率10(1)设在四次独立重复试验中,事件至少发生一次的概率为,试求在一次试验中事件发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为,求在第次才击中目标的概率答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.046 7. 8.(1)(2)9.; ; ; 10.(1) (2) 五、小结 :1独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生2如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生次的概率为对于此式可以这么理解:由于1次试验中事件要么发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中没有发生,即发生,由,所以上面的公式恰为展开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系 六、课后作业: 七、板书设计(略) 八、课后记: - 4 - 版权所有高考资源网