1、课时作业69随机事件的概率一、选择题1一个盒子内装有红球、白球、黑球三种球,其数量分别为3,2,1,从中任取两球,则互斥而不对立的两个事件为(D)A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红球、黑球各一个解析:红球、黑球各取一个,则一定取不到白球,故“至少有一个白球”“红球、黑球各一个”为互斥事件,又任取两球还包含“两个红球”这个事件,故不是对立事件2某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为(C)A0.95 B0.97C0.9
2、2 D0.08解析:记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)1P(B)P(C)15%3%92%0.92.3甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是(A)A甲获胜的概率是 B甲不输的概率是C乙输了的概率是 D乙不输的概率是解析:“甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P1,故A正确;“乙输了”等于“甲获胜”,其概率为,故C不正确;设事件A为“甲不输”,则A是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)(或设事件A为“甲不输”,则A是“乙获胜”的对立事件,所以P(A)1),故B
3、不正确;同理,“乙不输”的概率为,故D不正确4根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为(D)A15% B20%C45% D65%解析:因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故能为病人输血的概率为50%15%65%,故选D.5(2020石家庄教学质量检测)袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸
4、到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为(C)A. B.C. D.解析:由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为,故选C.6随着互联网的普及,网上购物已
5、逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4 500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n2 1001 000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是(C)A. B.C. D.解析:由题意,n4 5002002 1001 0001 200,所以对网上购物“比较满意”或“满意”的人数为1 2002 1003 300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为.7对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图
6、根据标准,产品长度在区间20,25)上的为一等品,在区间15,20)和区间25,30)上的为二等品,在区间10,15)和30,35上的为三等品用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为(D)A0.09 B0.20C0.25 D0.45解析:设25,30)上的频率为x,由所有矩形面积之和为1,即x(0.020.040.030.06)51,得25,30)上的频率为0.25.所以产品为二等品的概率为0.0450.250.45.8袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和小于4的
7、概率为(C)A. B.C. D.解析:从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为P,故选C.9已知a2,0,1,2,3,b3,5,则函数f(x)(a22)exb为减函数的概率是(C)A. B.C. D.解析:函数f(x)(a22)exb为减函数,则a22的概率是.解析:同时掷两颗均匀的正方体骰子,得到的点数分别为a,b,共有CC种情况当ab时,离心率e,所以a2b,符合a2b的有,共6种情况同理
8、,当a的情况也有6种综上可知,离心率e的概率为.17无重复数字的五位数a1a2a3a4a5,当a1a3,a3a5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是.解析:a2a1,a2a3,a4a3,a4a5,a2只能是3,4,5中的一个若a23,则a45,a54,a1与a3是1或2,这时共有A2(个)符合条件的五位数;若a24,则a45,a1,a3,a5可以是1,2,3,共有A6(个)符合条件的五位数;若a25,则a43或4,此时分别与中的个数相同满足条件的五位数有2(AA)16(个)又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A120(个),故所求概率为.