1、1995年全国高中数学联赛第 一 试 一选择题(每小题6分,共36分)1. 设等差数列满足且,Sn为其前项之和,则Sn中最大的是( ) (A) (B) (C) (D)2. 设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为,则复数Z11995,Z21995,所对应的不同的点的个数是( ) (A)4 (B)5 (C)10 (D)203. 如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有( ) (A)1个 (B)2个 (C)50个 (D)100个4. 已知方程在区间(2n-1
2、,2n+1上有两个不相等的实根,则k的取值范围是( ) (A) (B) (C) (D)以上都不是5. 的大小关系是( ) (A) (B) (C) (D)6. 设O是正三棱锥P-ABC底面三角形ABC的中心,过O的动平面与PC交于S,与PA,PB的延长线分别交于Q,R,则和式 (A)有最大值而无最小值 (B有最小值而无最大值 (C)既有最大值又有最小值,两者不等 (D)是一个与面QPS无关的常数二、填空题(每小题9分,共54分)1. 设为一对共轭复数,若,且为实数,则_2. 一个球的内接圆锥的最大体积与这个球的体积之比为_3. 用x表示不大于实数x的最大整数, 方程的实根个数是_4. 直角坐标平
3、面上,满足不等式组的整点个数是_5. 将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可使用,那么不同的染色方法的总数是_6. 设M=1,2,3,1995,A是M的子集且满足条件:当时,则A中元素的个数最多是_第 二 试一、(25分) 给定曲线族,为参数,求该曲线在直线上所截得的弦长的最大值二、(25分) 求一切实数,使得三次方程的三个根均为自然数三、(35分) 如图,菱形ABCD的内切圆O与各边分别切于E,F,G,H,在弧与上分别作圆O的切线交AB于M,交BC于N,交CD于P,交DA于Q,求证: /四、(35分) 将平面上的每个点都以红,蓝两色之一着色。证明:存在这样两个相似的三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色