ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:484KB ,
资源ID:347408      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-347408-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012届高考数学一轮复习教案:11.1 随机事件的概率.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012届高考数学一轮复习教案:11.1 随机事件的概率.doc

1、高考资源网() 您身边的高考专家第十一章 概率网络体系总览考点目标定位1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.复习方略指南概率是新课程中新增加部分的主要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及相互独立事件同时发生的概率.这一内容从2000年被列入新课程高考的考试说明.在2000,2001,

2、2002,2003,2004这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分提高到17分,从题目的位置看,2000年为第(17)题,2001年为第(18)题,2002年为第(19)题,2003年为第(20)题即题目的位置后移,2004年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比(12150=112.5)是在数学中课时比(约为11330=130)的2.4倍.概率试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如普法考

3、试、串联并联系统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强基础,注重应用.11.1 随机事件的概率知识梳理1.随机事件:在一定条件下可能发生也可能不发生的事件.2.必然事件:在一定条件下必然要发生的事件.3.不可能事件:在一定条件下不可能发生的事件.4.事件A的概率:在大量重复进行同一试验时,事件A发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0P(A)1,显然必然事件的概率是1,不可能事件的概率是0.5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组

4、成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是.如果某个事件A包含的结果有m个,那么事件A的概率P(A)=.6.使用公式P(A)=计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.点击双基1.(2004年全国,文11)从1,2,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A. B. C. D.解析:基本事件总数为C,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中

5、2个奇数1个偶数,前者C,后者CC.A中基本事件数为C+CC.符合要求的概率为= .答案:C2.(2004年重庆,理11)某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为A. B. C. D.解析:10位同学总参赛次序A.一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A,与另外5人全排列A,二班2位同学不排在一起,采用插空法A,即AAA.所求概率为= .答案:B3.(2004年江苏,9)将一

6、颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是A. B. C. D.解析:质地均匀的骰子先后抛掷3次,共有666种结果.3次均不出现6点向上的掷法有555种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为=,由对立事件概率公式,知3次至少出现一次6点向上的概率是1= .答案:D4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为_.解析:恰有3个红球的概率P1=.有4个红球的概率P2=.至少有3个红球的概率P=P1+P2=.答案:

7、5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为_.解析:P=.答案:典例剖析【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C种,另一个不同数字的取法有C种.而这取出的五个数字共可排出C个不同的五位数,故恰有4个相同数字的五位数的结果有CCC个,所求概率P=.答:其中恰恰有4个相同数字的概率是.【例2】 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是,求该班中

8、男女生相差几名?解:设男生有x名,则女生有(36x)人,选出的2名代表是同性的概率为P=,即+=,解得x=15或21.所以男女生相差6人.【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:(1)无空盒的概率;(2)恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果.(1)其中无空盒的结果有A种,所求概率P=.答:无空盒的概率是.(2)先求恰有一空盒的结果数:选定一个空盒有C种,选两个球放入一盒有CA种,其余两球放入两盒有A种.故恰有一个空盒的结果数为CCAA,所求概率P(A)=.答:恰有一个空盒的概率是.深化拓展把n+1个不同的球投入n个不同的盒子

9、(nN*).求:(1)无空盒的概率;(2)恰有一空盒的概率.解:(1).(2).【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:(1)恰好第三次打开房门锁的概率是多少?(2)三次内打开的概率是多少?(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?解:5把钥匙,逐把试开有A种等可能的结果.(1)第三次打开房门的结果有A种,因此第三次打开房门的概率P(A)=.(2)三次内打开房门的结果有3A种,因此,所求概率P(A)=.(3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有AA种,从而三次内打开的结果有AAA种,所求概率P(A)=.

10、方法二:三次内打开的结果包括:三次内恰有一次打开的结果有CAAA种;三次内恰有2次打开的结果有AA种.因此,三次内打开的结果有CAAA+AA种,所求概率P(A)=.特别提示1.在上例(1)中,读者如何解释下列两种解法的意义.P(A)=或P(A)= .2.仿照1中,你能解例题中的(2)吗?闯关训练夯实基础1.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为A. B. C. D.解析:P=.答案:B2.(2004年湖北模拟题)甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题

11、的概率是A. B. C. D.解析:甲、乙二人依次抽一题有CC种方法,而甲抽到判断题,乙抽到选择题的方法有CC种.P=.答案:C3.(2004年全国,理11)从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为A. B. C. D.解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.概率为=.答案:D4.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是_.(结果用分数表

12、示)解析:总的排法有A种.最先和最后排试点学校的排法有AA种.概率为=.答案: 5.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?分析:(1)是等可能性事件,求基本事件总数和A包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.解:(1)基本事件总数甲、乙依次抽一题有CC种,事件A包含的基本事件数为CC,故甲抽到选择题,乙抽到判断题的概率为=.(2)A包含的基本事件总数分三类:甲抽到选择题,乙抽到判断题有CC;甲抽到选择题,乙也抽

13、到选择题有CC;甲抽到判断题,乙抽到选择题有CC.共CC+CC+CC.基本事件总数CC,甲、乙二人中至少有一人抽到选择题的概率为=或P()=,P(A)=1P()=.6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求:(1)每盒各有一个奇数号球的概率;(2)有一盒全是偶数号球的概率.解:6个球平均分入三盒有CCC种等可能的结果.(1)每盒各有一个奇数号球的结果有AA种,所求概率P(A)=.(2)有一盒全是偶数号球的结果有(CC)CC,所求概率P(A)=.培养能力7.(2004年全国,18)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:(1)A、B两组中有一

14、组恰有两支弱队的概率;(2)A组中至少有两支弱队的概率.(1)解法一:三支弱队在同一组的概率为+=,故有一组恰有两支弱队的概率为1=.解法二:有一组恰有两支弱队的概率为+=.(2)解法一:A组中至少有两支弱队的概率为+=.解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A组中至少有两支弱队的概率为.8.从1,2,10这10个数字中有放回地抽取3次,每次抽取一个数字,试求3次抽取中最小数为3的概率.解:有放回地抽取3次共有103个结果,因最小数为3又可分为:恰有一个3,恰有两个3,恰有三个3.故最小数为3的结果有C72+C7+C,所求概率

15、P(A)=0.169.答:最小数为3的概率为0.169.探究创新9.有点难度哟!将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数.(1)若点P(a,b)落在不等式组表示的平面区域的事件记为A,求事件A的概率;(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.解:(1)基本事件总数为66=36.当a=1时,b=1,2,3;当a=2时,b=1,2;当a=3时,b=1.共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,P(A)=.(2)当m=7时,(1,6),(2,5),(3,4),(4,3

16、),(5,2),(6,1)共有6种,此时P= 最大.思悟小结求解等可能性事件A的概率一般遵循如下步骤:(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.(3)应用等可能性事件概率公式P=计算.教师下载中心教学点睛1.一个随机事件的发生既有随机性(对单次试验),又存在着统计规律(对大量重复试验),这是偶然性和必然性的对立统一.2.随机事件A的概率P(A)满足0P(A)1.(3)P(A)=既是等可能性事件的概率的定义,又是计算这种概率的基本方法.拓展题例【例1】 某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概率是多少? 解:P(A)=.答:顾客按所定的颜色得到定货的概率是.【例2】 一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设恰有一个红球=A,第三个球是红球=B.求在下列条件下事件A、B的概率.(1)不返回抽样;(2)返回抽样.解:(1)不返回抽样,P(A)=,P(B)= .(2)返回抽样,P(A)=C()2=,P(B)= .- 9 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3