ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:201KB ,
资源ID:347317      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-347317-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012届高考数学一轮复习教案:1.3 充要条件与反证法.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012届高考数学一轮复习教案:1.3 充要条件与反证法.doc

1、1.3 充要条件与反证法知识梳理1.充分条件:如果pq,则p叫q的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q是p的必要条件.2.必要条件:如果qp,则p叫q的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q是p的充分条件.3.充要条件:如果既有pq,又有qp,记作pq,则p叫做q的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法.点击双基1.ac2bc2是ab成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:abac2bc2,如c

2、=0.答案:A2.(2004年湖北,理4)已知a、b、c为非零的平面向量.甲:ab=ac,乙:b=c,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件解析:命题甲:ab=aca(bc)=0a=0或b=c.命题乙:b=c,因而乙甲,但甲乙.故甲是乙的必要条件但不是充分条件.答案:B3.(2004年浙江,8)在ABC中,“A30”是“sinA”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:在ABC中,A300sinA1sinA,sinA30A150A30.“A30”是“si

3、nA”的必要不充分条件.答案:B4.若条件p:a4,q:5a6,则p是q的_.解析:a45a6,如a=7虽然满足a4,但显然a不满足5a6.答案:必要不充分条件5.(2005年春季上海,16)若a、b、c是常数,则“a0且b24ac0”是“对任意xR,有ax2+bx+c0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a0且b24ac0,则对任意xR,有ax2+bx+c0,反之,则不一定成立.如a=0,b=0且c0时,也有对任意xR,有ax2+bx+c0.因此应选A.答案:A典例剖析【例1】 使不等式2x25x30成立的一个充分而不必要条件是A.x0 B.x

4、0C.x1,3,5D.x或x3剖析:2x25x30成立的充要条件是x或x3,对于A当x=时2x25x30.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x的方程ax2+bx+c=0有一根为1的充分必要条件是a+b+c=0.证明:(1)必要性,即“若x=1是方程ax2+bx+c=0的根,则a+b+c=0”.x=1是方程的根,将x=1代入方程,得a12+b1+c=0,即a+b+c=0.(2)充分性,即“若a+b+c=0,则x=1是方程ax2+bx+c=0的根”.把x=1代入方程的左边,得a12+b1+c=a+b+c.a+b+c=0,x=1是方程的根.综合(1)(2)知命题成立.深化拓展求a

5、x2+2x+1=0(a0)至少有一负根的充要条件.证明:必要性:(1)方程有一正根和一负根,等价于a0.(2)方程有两负根,等价于0a1.综上可知,原方程至少有一负根的必要条件是a0或0a1.充分性:由以上推理的可逆性,知当a0时方程有异号两根;当0a1时,方程有两负根.故a0或0a1是方程ax2+2x+1=0至少有一负根的充分条件.答案:a0或0a1.【例3】 下列说法对不对?如果不对,分析错误的原因.(1)x2x2是x=x2的充分条件;(2)x2x2是x=x2的必要条件.解:(1)x2=x+2是x=x2的充分条件是指x2=x+2x=x2.但这里“”不成立,因为x=1时,“”左边为真,但右边

6、为假.得出错误结论的原因可能是应用了错误的推理:x2=x+2x=x2=x.这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x2=x+2是x=x2的必要条件是指x=x2x2=x+2.但这里“”不成立,因为x=0时,“”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x=x2=xx+2=x2.这里推理的第一步是错误的(请同学补充说明具体错在哪里).评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x2=x+2的真值集合是1,2,x=x2的真值集合是0,2,1,20,2,而0,2 1,2,所以(1)(2)两个结论都不对.闯关训练夯实基础1.(2004年

7、重庆,7)已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有pr,rs,sq,prsq.但由于rp,qp.答案:A2.(2003年北京高考题)“cos2=”是“=k+,kZ”的A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件解析:cos2=2=2k=k.答案:A3.(2005年海淀区第一学期期末练习)在ABC中,“AB”是“cosAcosB”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在ABC中,ABcosAcosB

8、(余弦函数单调性).答案:C4.命题A:两曲线F(x,y)0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+G(x,y)0(为常数)过点P(x0,y0),则A是B的_条件.答案:充分不必要5.(2004年北京,5)函数f(x)=x22ax3在区间1,2上存在反函数的充分必要条件是A.a(,1B.a2,+)C.1,2D.a(,12,+)解析:f(x)=x22ax3的对称轴为x=a,y=f(x)在1,2上存在反函数的充要条件为1,2(,a或1,2a,+),即a2或a1.答案:D6.已知数列an的前n项和Sn=pn+q(p0且p1),求数列an成等比数列的充要条件.分析:先根据

9、前n项和公式,导出使an为等比数列的必要条件,再证明其充分条件.解:当n=1时,a1=S1=p+q;当n2时,an=SnSn1=(p1)pn1.由于p0,p1,当n2时,an是等比数列.要使an(nN*)是等比数列,则=p,即(p1)p=p(p+q),q=1,即an是等比数列的必要条件是p0且p1且q=1.再证充分性:当p0且p1且q=1时,Sn=pn1,an=(p1)pn1,=p(n2),an是等比数列.培养能力7.(2004年湖南,9)设集合U=(x,y)xR,yR,A=(x,y)|2xy+m0,B=(x,y)|x+yn0,那么点P(2,3)A(UB)的充要条件是A.m1,n5B.m1,n

10、5C.m1,n5D.m1,n5解析:UB=(x,y)nx+y,将P(2,3)分别代入集合A、B取交集即可.选A.答案:A8.已知关于x的一元二次方程mx24x+4=0, x24mx+4m24m5=0. 求使方程都有实根的充要条件.解:方程有实数根的充要条件是1=(4)216m0,即m1;方程有实数根的充要条件是2=(4m)24(4m24m5)0,即m.方程都有实数根的充要条件是m1.9.已知a、b、c是互不相等的非零实数.求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.证明:反证法:假设三个方程中都没有两个相异实根,则1=4b2

11、4ac0,2=4c24ab0,3=4a24bc0.相加有a22ab+b2+b22bc+c2+c22ac+a20,(ab)2+(bc)2+(ca)20. 由题意a、b、c互不相等,式不能成立.假设不成立,即三个方程中至少有一个方程有两个相异实根.探究创新10.若x、y、z均为实数,且a=x22y+,b=y22z+,c=z22x+,则a、b、c中是否至少有一个大于零?请说明理由.解:假设a、b、c都不大于0,即a0,b0,c0,则a+b+c0.而a+b+c=x22y+y22z+z22x+=(x1)2+(y1)2+(z1)2+3,30,且无论x、y、z为何实数,(x1)2+(y1)2+(z1)20,

12、a+b+c0.这与a+b+c0矛盾.因此,a、b、c中至少有一个大于0.思悟小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明.教师下载中心教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证.拓展题例【例题】 指出下列命题中,p是q的什么条件.(1)p:0x3,q:|x1|2;(2)p:(x2)(x3)=0,q:x=2;(3)p:c=0,q:抛物线y=ax2+bx+c过原点.解:(1)p:0x3,q:1x3. p是q的充分但不必要条件.(2)pq,qp.p是q的必要但不充分条件.(3)p是q的充要条件.评述:依集合的观点看,若AB,则A是B的充分条件,B是A的必要条件;若A=B,则A是B的充要条件. w.w.w.k.s.5.u.c.o.m

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3