ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:348KB ,
资源ID:345560      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-345560-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高中数学 微专题85 几何概型练习(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高中数学 微专题85 几何概型练习(含解析).doc

1、微专题85 几何概型一、基础知识:1、几何概型:每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型2、对于一项试验,如果符合以下原则:(1)基本事件的个数为无限多个(2)基本事件发生的概率相同则可通过建立几何模型,利用几何概型计算事件的概率3、几何概型常见的类型,可分为三个层次:(1)以几何图形为基础的题目:可直接寻找事件所表示的几何区域和总体的区域,从而求出比例即可得到概率。(2)以数轴,坐标系为基础的题目:可将所求事件转化为数轴上的线段(或坐标平面的可行域),从而可通过计算长度(或面积)的比例求的概率(将问题转化为第(1)类问题

2、)(3)在题目叙述中,判断是否运用几何概型处理,并确定题目中所用变量个数。从而可依据变量个数确定几何模型:通常变量的个数与几何模型的维度相等:一个变量数轴,两个变量平面直角坐标系,三个变量空间直角坐标系。从而将问题转化成为第(2)类问题求解二、典型例题:例1:已知函数,在定义域内任取一点,使的概率是( )A. B. C. D. 思路:先解出时的取值范围:,从而在数轴上区间长度占区间长度的比例即为事件发生的概率,所以答案:C例2:如图,矩形内的阴影部分是由曲线及直线与轴围成,向矩形内随机投掷一点,若落在阴影部分的概率为,则的值是( )A. B. C. D. 思路:落在阴影部分的概率即为阴影部分面

3、积与长方形面积的比值长方形的面积,阴影面积,所以有,可解得,从而答案:B例3:已知正方形的边长为2,是边的中点,在正方形内部随机取一点,则满足的概率为( )A. B. C. D. 思路:可理解为以为圆心,为半径的圆的内部,通过作图可得概率为阴影部分面积所占正方形面积的比例。可将阴影部分拆为一个扇形与两个直角三角形,可计算其面积为,正方形面积,所以答案:B小炼有话说:到某定点的距离等于(或小于)定长的轨迹为圆(或圆的内部),所以从和为定点便可确定所在的圆内例4:一个多面体的直观图和三视图所示,是的中点,一只蝴蝶在几何体内自由飞翔,由它飞入几何体内的概率为( )A. B. C. D. 思路:所求概

4、率为棱锥的体积与棱柱体积的比值。由三视图可得,且两两垂直,可得,棱锥体积,而,所以。从而答案:D例5:如图,点等可能分布在菱形内,则的概率是( )A. B. C. D. 思路:对联想到数量积的投影定义,即乘以在上的投影,不妨将投影设为,则,即即可,由菱形性质可得,取中点,有,所以 且垂足四等分,点位置应该位于内。所以 答案:D例6:某人睡午觉醒来,发现表停了,他打开收音机,想听电台报时,则他等待时间不多于15分钟的概率为( )A. B. C. D. 思路:所涉及到只是时间一个变量,所以考虑利用数轴辅助解决。在一个小时中,符合要求的线段长度所占的比例为,所以概率答案:B例7:已知函数,若都是区间

5、内的数,则使成立的概率是( )A. B. C. D. 思路:题目中涉及两个变量,所以考虑利用直角坐标系解决。设为“在区间内”,则要满足的条件为: ,设事件为“成立”,即,所以要满足的条件为:,作出各自可行域即可得到 答案:C例8:在区间上随机取两个数,记为事件“”的概率,为事件“”的概率,为事件“”的概率,则( )A. B. C. D. 思路:分别在坐标系中作出“”,“”,“”的区域,并观察或计算其面积所占单位长度正方形的比例,即可得到的大小:答案:B例9:小王参加网购后,快递员电话通知于本周五早上7:30-8:30送货到家,如果小王这一天离开家的时间为早上8:00-9:00,那么在他走之前拿

6、到邮件的概率为( )A. B. C. D. 思路:本题中涉及两个变量,一个是快递员到达的时刻,记为,一个是小王离开家的时刻,记为,由于双变量所以考虑建立平面坐标系,利用可行域的比值求得概率。必然事件所要满足的条件为: ,设“小王走之前拿到邮件”为事件,则要满足的条件为: ,作出和的可行域,可得答案:D例10:已知一根绳子长度为,随机剪成三段,则三段刚好围成三角形的概率为_思路:随机剪成三段,如果引入3个变量,则需建立空间坐标系,不易于求解。考虑减少变量个数,由于三段的和为,设其中两段为,则第三段为。只用两个变量,所以就可以建立平面直角坐标系进行解决。设为“一根绳子随机剪三段”,则要满足的条件为:,设事件为“三段围成三角形”,则任意两边之和大于第三边,所以满足的条件为,在同一坐标系作出的可行域。则 答案:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3