1、高考资源网() 您身边的高考专家补偿练6数列(限时:40分钟)一、选择题1.已知数列an满足a11,anan12n(n2),则a7()A.53 B.54 C.55 D.109解析a7(a7a6)(a6a5)(a5a4)(a4a3)(a3a2)(a2a1)a12(765432)155.答案C2.等差数列an的前n项和为Sn,若6a32a43a25,则S7()A.28 B.21 C.14 D.7解析6a32a43a26(a12d)2(a13d)3(a1d)5a115d5a4,a41,S77a47.答案D3.设等比数列an的前n项和为Sn,若3,则()A.2 B. C. D.3解析数列an是等比数列
2、,S3,S6S3,S9S6也成等比数列,则(S6S3)2S3(S9S6),令S63,S31,解得:S97,.答案B4.设Sn为等差数列an的前n项和,若a11,公差d2,Sn2Sn36,则n()A.5 B.6 C.7 D.8解析由Sn2Sn36,得:an1an236,即a1nda1(n1)d36,又a11,d2,22n2(n1)36.解得n8.答案D5.设an是等比数列,则“a1a2a4”是“数列an是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析当a10,q1时,满足a1a2a4,但此时的数列a1,a3,a5,0,a2,a4,a6,0
3、,是摆动数列,所以a1a2a4时,数列an不一定是递增数列,充分性不成立;若数列an是递增数列,则一定有a1a2a4,必要性成立.答案B6.数列an满足a11,a23,an1(2n)an(n1,2,),则a3等于()A.15 B.10 C.9 D.5解析由a2(2)a1,可得23,解得1,a3(221)315.答案A7.已知等差数列an的前n项和为Sn,a4a7a109,S14S377,则Sn取得最小值时,n的值为()A.4 B.5 C.6 D.7解析设an的公差为d.由得因此等差数列an的通项公式为an2n11,令an0,解得n,故前5项和最小.答案B8.在正项等比数列an中,a11,前n项
4、和为Sn,且a3,a2,a4成等差数列,则S7的值为()A.125 B.126C.127 D.128解析设正项等比数列an的公比为q(q0),且a11,由a3,a2,a4成等差数列,得2a2a4a3,即2a1qa1q3a1q2.因为q0.所以q2q20.解得q1(舍),或q2.则S7127.答案C9.已知各项不为0的等差数列an满足a42a3a80,数列bn是等比数列,且b7a7,则b2b8b11等于()A.1 B.2 C.4 D.8解析由a42a3a80得:2aa43a84a7,a72,b72,又b2b8b11b1qb1q7b1q10bq18(b7)38.答案D10.设等差数列an和等比数列
5、bn的首项都是1,公差与公比都是2,则ab1ab2ab3ab4ab5()A.54 B.56 C.58 D.57解析由题意,an12(n1)2n1,bn12n12n1,ab1ab5a1a2a4a8a16137153157.答案D11.已知函数f(x)x2bx的图象在点A(1,f(1)处的切线斜率为3,数列的前n项和为Sn,则S2 014的值为()A. B. C. D.解析函数的导数f(x)2xb,点A(1,f(1)处的切线的斜率为3,f(1)2b3,解得b1.f(x)x2xx(x1),S2 0141.答案C12.已知等差数列an的公差d0,且a1,a3,a13成等比数列,若a11,Sn是数列an
6、前n项的和,则(nN*)的最小值为()A.4 B.3 C.22 D.解析据题意由a1,a3,a13成等比数列可得(12d)2112d,解得d2,故an2n1,Snn2,因此(n1)2,据基本不等式知(n1)2224,当n2时取得最小值4.答案A二、填空题13.已知等差数列an的公差d不为0,且a1,a3,a7成等比数列,则的值为_.解析a1,a3,a7成等比数列,aa1a7,即(a12d)2a1(a16d),4d22a1d,2.答案214.已知数列an,an2n,则_.解析由题意得数列an为首项是2,公比为2的等比数列,数列是首项为,公比为的等比数列,则1.答案115.已知an是等比数列,a22,a5,则a1a2a2a3anan1_.解析由a5a2q32q3,解得q.数列anan1仍是等比数列,其首项是a1a28,公比为,所以a1a2a2a3anan1(14n).答案(14n)16.数列an的前n项和为Sn,且a13,an2Sn13n(n2),则该数列的通项公式an_.解析an2Sn13n,an12Sn23n1(n3),相减得:anan12an123n1,即an3an123n1,(n3).又a22S1322a13215,即,数列是以1为首项,为公差的等差数列,1(n1),an(2n1)3n1.答案(2n1)3n1- 4 - 版权所有高考资源网