ImageVerifierCode 换一换
格式:DOC , 页数:26 ,大小:2MB ,
资源ID:344617      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-344617-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高中数学讲义微专题55 数列中的不等关系 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高中数学讲义微专题55 数列中的不等关系 WORD版含解析.doc

1、第55炼 数列中的不等关系一、基础知识:1、在数列中涉及到的不等关系通常与数列的最值有关,而要求的数列中的最值项,要依靠数列的单调性,所以判断数列的单调性往往是此类问题的入手点2、如何判断数列的单调性:(1)函数角度:从通项公式入手,将其视为关于的函数,然后通过函数的单调性来判断数列的单调性。由于 ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为 的函数,得到函数的单调性后再结合得到数列的单调性(2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列)

2、3、用数列的眼光去看待有特征的一列数:在解数列题目时,不要狭隘的认为只有题目中的是数列,实质上只要是有规律的一排数,都可以视为数列,都可以运用数列的知识来进行处理。比如:含的表达式就可以看作是一个数列的通项公式;某数列的前项和也可看做数列等等。4、对于某数列的前项和,在判断其单调性时可以考虑从解析式出发,用函数的观点解决。也可以考虑相邻项比较。在相邻项比较的过程中可发现:,所以的增减由所加项的符号确定。进而把问题转化成为判断的符号问题二、典型例题例1:已知数列,前项和满足 (1)求的通项公式 (2)设,若数列是单调递减数列,求实数的取值范围 解:(1) 时, 当时,符合上式 (2)思路:由(1

3、)可得:,由已知为单调递减数列可得对均成立,所以代入通项公式得到关于的不等式,即只需,构造函数或者数列求出的最大值即可解:是递减数列 ,即 只需 构造函数:设 则 所以在单调递增,在单调递减 时, 即 构造数列:设数列的通项公式 时,即当时, 所以的最大项为 例2:已知等差数列中,记数列的前项和为,若,对任意的恒成立,则整数的最小值是( )A. B. C. D. 思路:若恒成立,要找,则需先确定的通项公式得到:,所以,发现无法直接求和,很难变为简单的表达式,所以考虑将视为一个数列,通过相邻项比较寻找其单调性:,进而单调递减,所以,从而 答案:B例3:已知数列满足,若为等比数列,且(1)求(2)

4、设,记数列的前项和为 求 求正整数,使得对于,均有解:(1) 或(舍)(2) 思路:实质是求取到最大值的项,考虑分析的单调性,从解析式上很难通过函数的单调性判断,从而考虑相邻项比较。对于而言,的增减受符号的影响,所以将问题转化为判断的符号。可估计出当取得值较大时,会由正项变为负项。所以只要寻找到正负的分界点即可解:当时,可验证,从而可得设,则当时,递减时, 时,均有例4:已知数列的前项和为且,数列满足:,其前项和为(1)求(2)令,记的前项和为,对,均有,求的最小值解:(1)为公差是的等差数列 时,符合上式 为等差数列设前项和为 (2)思路:依题意可得:,可求出,从而,若最小,则应最接近的最大

5、最小值(或是临界值),所以问题转化成为求的范围,可分析其单调性。单调递增。所以最小值为,而当时,所以无限接近,故的取值范围为中的离散点,从而求出的最小值解:设,可知递增,当时, 若最小,则 例5(2014,黄州区校级模拟)数列的前项和,数列满足 (1)求数列的通项公式(2)求证:当时,数列为等比数列(3)在(2)的条件下,设数列的前项和为,若数列中只有最小,求的取值范围解:(1) 符合上式 (2)考虑即 数列为等比数列(3)思路:由(2)可求得通项公式,但不知其单调性,但可以先考虑必要条件以缩小的取值范围。若要最小,则最起码要比小,从而先求出满足的必要条件(也许最后结果是其子集),在这个范围内

6、可判定为递增数列,从而能保证最小由(2)可得:是公比为的等比数列 若要最小,则必然要即 则,所以为递增数列,符合最小的条件所以小炼有话说:在求参数范围时如果不能一次准确列出参数所满足的条件,可先写出其必要条件适当缩小其取值范围,往往会给解题带来新的突破口例6:(2014,文登市二模)各项均为正数的数列 ,其前项和为,满足 ,且 (1)求数列的通项公式(2)若,令,设数列的前项和为,试比较与的大小解:(1) (舍)或是公比为2的等比数列,解得: (2)思路:由(1)可得,进而可求出,比较大小只需两式作差,再进行化简通分可得。利用函数或构造数列判断出的符号即可解: 设 ,可得 为减函数 例7:(2

7、014,湖南模拟)已知各项都为正数的数列的前项和为,且对任意的,都有(其中,且为常数),记数列的前项和为 (1) 求数列的通项公式及(2)当时,将数列的前项抽去其中一项后,剩下三项按原来的顺序恰为等比数列的前项,记的前项和为 ,若存在,使得对任意,总有恒成立,求实数的取值范围解:(1) 可得: 即为公差是的等差数列在令得:解得: (2)思路:本小问实质是在数列背景下的多元恒成立问题,先求的表达式。由已知可得:时,要解决,首先要解出等比数列的通项公式。时,进而 显然抽去的应为,所以,得到, ,所以要处理的恒成立不等式为:。 再利用最值逐步消元即可解:时,进而成公比为的等比数列,即的公比为,且 而

8、由(1),当时,所以恒成立的不等式为:,所以设 可得为递增函数 所以对任意的均成立即设 为减函数 小炼有话说:本题在处理恒成立问题时,两个阶段对变量量词的不同导致取最大还是最小值要明确区分。第一阶段是存在,也就是说只要有满足不等式即可,所以只要最小值比右边小,就意味着已经存在这样的;第二阶段是对任意的,不等式均要成立,所以只要最大值满足不等式,剩下的函数值也必然能满足不等式。例8:已知数列的前项和,数列满足 (1)求证:数列是等差数列,并求数列的通项公式 (2)设数列满足(为非零整数,),问是否存在整数,使得对任意,都有 解:(1) 即是公差为1的等差数列 在令得: (2)思路:由(1)可得:

9、,所以等同于,化简可得: ,而的奇偶将决定的符号,所以要进行分类讨论解:由(1)可得:则等价于: 当为奇数时,恒成立不等式为:所以只需当为偶数时,恒成立不等式为:所以只需 例9:已知数列前项和为,且 (1)求的通项公式 (2)设,若集合恰有个元素,则实数的取值范围 解:(1) (2)思路:由(1)所得通项公式可利用错位相减法求 ,进而得到,要读懂集合恰有4个元素的含义,根据描述的特点可知:集合中的元素应该为从大到小排前4项的序数,所以只需判断出的单调性,并结合单调性选出较大的前4项,便可确定的取值。解: 两式相减可得: 下面考虑的单调性 时,即时,所以 而 从大到小排的前4项为: 例10:(2

10、015,天元区校级模拟)已知数列满足 (1)当时,求数列的前项和 (2)若对任意,都有成立,求的取值范围解:(1) 可得: 中奇数项成等差数列,偶数项成等差数列,公差均为4当时, 当为奇数时, 所以当为偶数时 为奇数时 (2)思路:考虑将不等式转化为的不等式,由(1)可得的奇数项,偶数项各为等差数列,所以只要通过分类讨论确定的奇偶,即可把均用表示,再求出范围即可解:由(1)可得:的奇数项,偶数项各为等差数列,且公差为4当为奇数时, 化简后可得: 所以只需设 解得:或当为偶数时,同理:, 化简可得:即设可得:综上所述:或三、历年好题精选1、已知数列的前项和为,且(1)若,求数列的前项和(2)若,

11、求证:数列是等比数列,并求其通项公式(3)记,若对任意的恒成立,求实数的最大值2、已知数列是首项的等比数列,其前项和中成等差数列(1)求数列的通项公式(2)设,若,求证: 3、已知数列满足:,且(1)证明:数列为等比数列(2)求数列的通项公式(3)设(为非零整数),试确定的值,使得对任意,都有成立4、已知数列中,(为非零常数),其前项和满足(1)求数列的通项公式(2)若,且,求的值(3)是否存在实数,使得对任意正整数,数列中满足的最大项恰为第项?若存在,分别求出的取值范围;若不存在,请说明理由5、(2016,无锡联考)数列的前项和为,且对一切正整数都有(1)求证:(2)求数列的通项公式(3)是

12、否存在实数,使得不等式对一切正整数都成立?若存在,求出的取值范围;若不存在,请说明理由6、已知函数,数列满足(1)求的通项公式(2)令,若对一切成立,求最小正整数7、(2016,贵阳一中四月考)已知数列的前项和为,且,数列满足,对任意,都有(1)求数列的通项公式(2)令,若对任意的,不等式恒成立,试求实数的取值范围8、设数列为数列的前项和,且(1)求的通项公式(2)设,数列的前项和,若存在整数,使得对任意的都有成立,求的最大值习题答案:1、解析:(1)(2)由可知,代入可得:时,代入可得:,即是公比为的等比数列在中,令可得:(3)可知为递减数列 为递增数列即的最大值为2、解析:(1)成等差数列

13、(2)由(1)可得: 为递增数列综上所述:3、解:(1) 是公比为的等比数列(2)当时,即当时, 是公差为的等差数列即(3)由(2)可得: 恒成立不等式为:当为奇数时,当为偶数时, 4、解析:(1)由已知令,则,所以 当时,验证可知符合通项公式(2)可得 (3)由可得若,则,不符题意,舍去若,则的最大项恰为第项因为该不等式对任意均成立解得:5、解析:(1) 即(2)由(1)可知,两式相减可得:中奇数项,偶数项分别成公差是4的等差数列中令令可得:综上所述可得:(3)恒成立的不等式为: 设,由可知为递减数列解得:6、解析:(1)由已知可得:为首项是1,公差是的等差数列(2)当时,可验证当时,满足上式所以对一切均成立最小正整数为7、解析:(1) 可得:,验证时,符合上式由可知为等比数列 (2)故恒成立不等式为:化简可得:。所以只需设8、解析:(1) 是公差为1的等差数列在令得: (2)由(1)可得: 设 为递增数列 即的最大值为

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3