1、第4章 三角函数、解三角形第一节任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义1角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形(2)分类(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合S|k360,kZ2弧度制的定义和公式(1)定义:在以单位长为半径的圆中,单位长度的孤所对的圆心角为1弧度的角,它的单位符号是rad,读作弧度正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)公式角的弧度数公式|(弧长用
2、l表示)角度与弧度的换算1 rad;1 rad弧长公式弧长l|r扇形面积公式Slr|r23.任意角的三角函数三角函数正弦余弦正切定义设是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫作的正弦,记作sin x叫作的余弦,记作cos 叫作的正切,记作tan 各象限符号三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线4.任意角的三角函数的定义(推广)设P(x,y)是角终边上异于顶点的任一点,其到原点O的距离为r,则sin ,cos ,tan (x0)若分别为、象限角,则所在象限如图:一、思考辨析(正确的打“”,错误的打“”)(1)锐角是第一象限的角,第一象限的角也都是
3、锐角()(2)角的三角函数值与其终边上点P的位置无关()(3)不相等的角终边一定不相同()(4)若为第一象限角,则sin cos 1.()答案(1)(2)(3)(4)二、教材改编1若满足sin 0,cos 0,则的终边在()A第一象限B第二象限C第三象限D第四象限Dsin 0,cos 0,的终边落在第四象限2下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk(kZ)C2,与终边相同又角度制与弧度制不可同时混用,故选C.3角225_弧度,这个角的终边落在第_象限答案二4设角的终边经过点P(4,3),那么2cos sin _.由已知并结合三角
4、函数的定义,得sin ,cos ,所以2cos sin 2.5一条弦的长等于半径,这条弦所对的圆心角大小为_弧度答案考点1象限角及终边相同的角象限角的两种判断方法(1)图像法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角(2)转化法:先将已知角化为k360(0360,kZ)的形式,即找出与已知角终边相同的角,再由角终边所在的象限判断已知角是第几象限角1.设集合M,N,那么()AMNBMNCNMDMNB由于M中,x18045k9045(2k1)45,2k1是奇数;而N中,x18045k4545(k1)45,k1是整数,因此必有MN,故选B.2设是第三象限角,且cos
5、 ,则是()A第一象限角B第二象限角C第三象限角D第四象限角B是第三象限角,2k2k,kZ,kk,kZ,的终边落在第二、四象限,又cos ,cos 0,是第二象限角3与2 010终边相同的最小正角是_150与2 010终边相同的角可表示为2 010k360,kZ,又当k6时,150,故与2 010终边相同的最小正角为150.4终边在直线yx上的角的集合是_|k18060,kZ终边在yx上的角可表示为k18060,kZ. (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需的角(2)确定k,(kZ*)的终边位置的
6、方法,先写出k或的范围,然后根据k的可能取值确定k或的终边所在位置考点2扇形的弧长、面积公式弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长及扇形面积公式,在使用公式时,要注意角的单位必须是弧度(2)分析题目已知哪些量、要求哪些量,然后灵活地运用弧长公式、扇形面积公式直接求解,或合理地利用圆心角所在三角形列方程(组)求解已知一扇形的圆心角为,半径为R,弧长为l.(1)若60,R10 cm,求扇形的弧长l;(2)已知扇形的周长为10 cm,面积是4 cm2,求扇形的圆心角;(3)若扇形周长为20 cm,当扇形的圆心角为多少弧度时,这个扇形的面积最大?解(1)60rad,所以lR10
7、(cm)(2)由题意得(舍去)或故扇形圆心角为rad.(3)由已知得l2R20,所以SlR(202R)R10RR2(R5)225,所以当R5 cm时,S取得最大值25 cm2,此时l10 cm,2 rad.求扇形面积最大值的问题时,常转化为二次函数的最值问题1.若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A. B.C3 D.D如图,等边三角形ABC是半径为r的圆O的内接三角形,则线段AB所对的圆心角AOB,作OMAB,垂足为M,在RtAOM中,AOr,AOM,AMr,ABr,lr,由弧长公式得.2已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是()A2Bsin 2C
8、.D2sin 1C如图,AOB2弧度,过O点作OCAB于C,并延长OC交于D.则AODBOD1弧度,且ACAB1,在RtAOC中,AO,即r,从而的长为lr.故选C.3已知扇形弧长为20 cm,圆心角为100,则该扇形的面积为_cm2.由弧长公式l|r,得r,所以S扇形lr20.考点3三角函数的概念及应用三角函数定义问题的常见类型及解题策略(1)已知角终边上一点P的坐标,可求角的三角函数值:先求点P到原点的距离,再用三角函数的定义求解(2)已知角的某三角函数值,求角终边上一点P的坐标中的参数值,可根据定义中的两个量列方程求参数值(3)三角函数值的符号及角的终边位置的判断已知一角的三角函数值(s
9、in ,cos ,tan )中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角终边的位置,注意终边在坐标轴上的特殊情况三角函数定义的应用 (1)在平面直角坐标系中,以x轴的非负半轴为角的始边,角,的终边分别与单位圆交于点和,则sin()()AB.CD.(2)角终边上一点P(4m,3m)(m0),则2sin cos _.(1)D(2)(1)由题意可知cos ,sin .cos ,sin ,sin()sin cos cos sin .(2)r5|m|,当m0时,r5m,sin ,cos ,2sin cos 2.当m0时,r5m,sin ,cos ,2sin cos 2,2sin
10、 cos .(3)角的终边在直线yx,求sin ,cos ,tan .解由题意tan ,当角终边落在第二象限,设角终边上一点P(3,4),r5,sin ,cos ,当角终边落在第四象限,设角终边上一点P(3,4),r5,sin ,cos .充分利用三角函数的定义解题是解答此类问题的关键,对于含字母的方程求解要注意字母的范围三角函数值的符号判断 (1)若tan 0,则()Asin 0Bcos 0Csin 20Dcos 20(2)若sin tan 0,且0,则角是()A第一象限角B第二象限角C第三象限角D第四象限角(1)C(2)C(1)由tan 0,可得的终边在第一象限或第三象限,此时sin 与c
11、os 同号,故sin 22sin cos 0,故选C.(2)由sin tan 0可知sin ,tan 异号,则为第二象限角或第三象限角由0可知cos ,tan 异号,则为第三象限角或第四象限角综上可知,为第三象限角判断三角函数值的符号,关键是确定角的终边所在的象限,然后结合三角函数值在各象限的符号确定所求三角函数值的符号,特别要注意不要忽略角的终边在坐标轴上的情况和三角函数的定义域三角函数线的应用函数y的定义域为_利用三角函数线,画出满足条件的终边范围(如图阴影部分所示)所以定义域为.利用三角函数线比较大小或解三角不等式,通常采用数形结合的方法,一般来说sin xb,cos xa,只需作直线y
12、b,xa与单位圆相交,连接原点与交点即得角的终边所在的位置,此时再根据方向即可确定相应的x的范围1.已知点P(tan ,cos )在第三象限,则角的终边在()A第一象限B第二象限C第三象限D第四象限Btan 0,cos 0,在第二象限2(2019枣庄模拟)已知角的终边过点P(8m,6sin 30),且cos ,则m的值为()A B. C D.Br,cos ,m0,即m.3若,从单位圆中的三角函数线观察sin ,cos ,tan 的大小是()Asin tan cos Bcos sin tan Csin cos tan Dtan sin cos C如图,作出角的正弦线MP,余弦线OM,正切线AT,观察可知sin cos tan .