1、一、学习目标:了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握回归直线方程的求解方法。二、学法指导:求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义否则,求出的回归直线方程毫无意义因此,对一组数据作线性回归分析时,应先看其散点图是否成线性求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误回归直线方程在现实生活与生产中有广泛的应用应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充因此,学过回归直线方程以后,应增强学生应
2、用回归直线方程解决相关实际问题的意识三、【自主学习】1相关关系的概念在实际问题中,变量之间的常见关系有两类:一类是确定性函数关系,变量之间的关系可以用函数表示。例如正方形的面积S与其边长之间的函数关系(确定关系);一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达。例如一块农田的水稻产量与施肥量的关系(非确定关系)相关关系: 相关关系与函数关系的异同点相同点: 不同点: 2求回归直线方程的思想方法观察散点图的特征,发现各点大致分布在一条直线的附近,思考:类似图中的直线可画几条?最能代表变量x与y之间关系的直线的特征。【典例分析】例1:下列各组变量哪个是函数关系,哪个是相关关系?(1)
3、电压U与电流I; (2)圆面积S与半径R(3)自由落体运动中位移s与时间t;(4)粮食产量与施肥量(5)人的身高与体重; (6)广告费支出与商品销售额例2、在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23273841454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗? 散点图.: 正相关: 负相关: 问题2:年龄和人体脂肪
4、含量的样本数据的散点图中的点的分布有什么特点? 回归方程 问题3:那么,我们该怎样来求出这个回归方程?最小二乘法 求样本数据的线性回归方程,可按下列步骤进行:第一步,计算平均数 , , 第二步,求和 , , 第三步,计算 第四步,写出回归方程 某工厂对某产品的产量与成本的资料分析后有如下数据:产量x(千件)2356成本y(万元)78912(1)画出散点图;(2)求成本y与产量x之间的线性回归方程。(3)如果产量为8千件时,预测成本。五、【课后作业】1 . 下列两个变量之间的关系哪个不是函数关系()A角度和它的余弦值B.正方形边长和面积C正边形的边数和它的内角和D.人的年龄和身高2某市纺织工人的
5、月工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x,则下列说法中正确的是( ) A劳动生产率为1000元时,月工资为130元B劳动生产率提高1000元时,月工资提高约为130元C劳动生产率提高1000元时,月工资提高约为80元D月工资为210元时,劳动生产率为2000元4设有一个回归方程为y21.5x,则变量x增加一个单位时()Ay平均增加1.5个单位 By平均增加2个单位Cy平均减少1.5个单位 Dy平均减少2个单位5.线性回归方程必过( )A、(0,0)点 B、(,0)点 C、(0,)点 D、(,)点4正常情况下,年龄在18岁到38岁的人们,体重y(kg)依身高x(cm)的回归方程为y=0.72x-58.5。张红红同学不胖不瘦,身高1米78,他的体重应在 kg左右。5.给出施化肥量对水稻产量影响的试验数据:施化肥量x15202530354045水稻产量y330345365405445450455(1)画出上表的散点图;(2)求出回归直线并且画出图形