ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:301KB ,
资源ID:340195      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-340195-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高中数学 微专题36 向量的数量积——寻找合适的基底练习(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高中数学 微专题36 向量的数量积——寻找合适的基底练习(含解析).doc

1、微专题36 向量的数量积寻找合适的基底 在高考中经常会遇到几何图形中计算某两个向量数量积的问题,如果无法寻找到计算数量积的要素(模长,夹角)那么可考虑用合适的两个向量(称为基底)将两个向量表示出来,进而进行运算。这也是在几何图形中处理向量数量积的一个重要方法一、基础知识:(一)所涉及的平面向量定理及数量积运算法则:1、平面向量基本定理:若向量为两个不共线的向量,那么对于平面上任意的一个向量,均存在唯一一对实数,使得。其中成为平面向量的一组基底。(简而言之,不共线的两个向量可以表示所有向量)2、向量数量积运算,其中为向量的夹角3、向量夹角的确定:向量的夹角指的是将的起点重合所成的角,其中:同向

2、:反向 : 4、数量积运算法则:(1)交换律: (2)系数结合律:(3)分配律:因为向量数量积存在交换律与分配律,才使得有些向量数量积运算的展开式与实数因式相乘的展开式规律相同:例如: 5、若,则由此可见,只要知道基底的模与数量积,以及将用基底表示出来,则可计算(二)选择合适基底解题的步骤与技巧:1、如何选择“合适”的基底:题目中是否有两个向量模长已知,数量积可求呢?如果有,那就是它们了。所以在此类题目中首先可先确定那些向量的数量积与模长已知。常见的可以边所成向量作基底的图形有:等边三角形,已知两边的直角三角形,矩形,特殊角的菱形等。2、向量的表示:尝试所求数量积的两个向量是否能被你所选中的基

3、底进行表示,常用的方法有:(1)向量的加减运算(2)“爪”字型图:在中,是上的点,如果,则,其中知二可求一。特别的,如果是边上的中线,则3、计算数量积:将所求向量用基地表示后,代入到所求表达式计算即可,但在计算过程中要注意基底的夹角二、例题精炼例1:如图,在中,是边上一点,则_思路:模长未知(尚可求出),夹角未知,所以很难直接求出数量积。考虑是否有合适基底,可计算出,进而对于,模长均已知,数量积已求,条件齐备,适合作为基底。用表示:,答案:例2:如图,已知在中,则_思路:观察条件,很难直接利用公式求解.考虑选择两个向量表示,条件中(数量积有了),(模长有了),所以考虑用作为基底。下一步只需将表

4、示出来,(底边比值联想到“爪”字型图),解得:所以答案:例3:在边长为1的正三角形中,设,则_思路:如图,等边三角形三边已知,夹角已知,由此对于三边所成的向量,两两数量积均可计算,所以考虑用三边向量进行表示,表示的方法很多,例如观察“爪”字形图可得,(注意向量夹角)答案:小炼有话说:这道题由于是等边三角形,故可以建系去做,以为坐标原点,所在直线为轴,所在直线为轴。坐标完成之时,就是计算的完成之日,且此法在计算上更为简便。例4:如图,在中,已知,点分别在边上,且,点为中点,则的值是( )A. B. C. D. 思路:在本题中已知及两个向量的夹角,所以考虑将作为一组基底。则考虑将用进行表示,再做数

5、量积即可解: 且,所以有:由已知可得:答案:C例5:已知向量的夹角是,且,若,且,则实数的值是_思路:题中模长夹角已知,所以选择它们作为基底,表示,再根据求出即可解: 即 式变为:解得 答案: 例6:在边长为的正三角形中,则的最大值为_答案: 思路:所给为等边三角形,则三边所成向量两两数量积可解。所以用三边向量将表示出来,再作数量积运算并利用消元即可求出最值解: 且 等号成立条件: 答案:小炼有话说:(1)本题在最后求最值时还可以利用均值不等式迅速把问题解决:(2)在消元时要注意,如果所消去的元本身有范围,则这个范围由主元来承担,比如本题中用把消掉,则所满足的条件除了已知的之外,还有,即 例7

6、:如图,在四边形中,是等边三角形,则的值为_思路:从条件中可分析,的边所成的向量两两之间数量积可求,其公共边为,所以以作为突破口,所求数量积中只有需要转换,可得,所以,进而可解解:在中, 在等边三角形中, 答案: 小炼有话说:(1)在求时要注意夹角不是,而是它的补角!(2)在求也可以用投影定义来解,即在上的投影为,所以例8:如图,四边形满足,若是的中点,则( )A. B. C. D. 思路:本题要抓住这个条件,所求表达式中主要解决。从图中可发现分别是的中线,从而可用条件中的向量进行表示:,从而求得表达式的值解: 答案:D例9:菱形边长为,点分别在上,且,若,则( )A. B. C. D. 思路

7、:本题已知菱形边长和两边夹角,所以菱形四条边所成向量两两数量积可求,所以可以考虑将题目中所给的所涉及的向量用菱形的边和进行表示,进而列出关于的方程,解出方程便可求出解: 答案:D例10:已知向量满足条件:,且,点是内一动点,则_思路:本题已知模长,可对进行变形得到更多条件:,同理,从而可将所求式子中的向量均用表示再进行计算即可。解:,代入可得:,同理 答案: 小炼有话说:(1)本题在处理关系时,从入手两边同时模长平方,得到数量积的关系,这也是“向量等式数量积等式”的常见变形方法(2)在处理关系时也可以通过数形结合,从和中发现在图像上的特点,推断出两两夹角从而计算出它们的数量积(3)为动点,但从所求来看表达式有极大可能是一个定值,所以在应试时如果想不到正规方法,也可以考虑利用特殊值进行处理,比如利用条件构造出一个特殊模型,即为等边三角形,且是中心,然后再给选择一个特殊位置(比如与重合)计算出结果。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3