ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:860.50KB ,
资源ID:338468      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-338468-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省海门中学高二数学(苏教版)教学案 选修2-2 第二章 第二节 直接证明与间接证明.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省海门中学高二数学(苏教版)教学案 选修2-2 第二章 第二节 直接证明与间接证明.doc

1、直接证明与间接证明教学案课题 直接证明-综合法与分析法 第 001 课时教学案班级 姓名 第 小组教学目标:知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。教学重点:了解分析法和综合法的思考过程、特点教学难点:分析法和综合法的思考过程、特点教学设想:分析法和综合法的思考过程、特点. “变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

2、教学过程:学生探究过程:证明的方法(1)、分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。 例1、设a、b是两个正实数,且ab,求证:a3+b3a2b+ab2证明:例2、若实数,求证: 例3、已知求证本题可以尝试使用差值比较和商值比较两种方法进行。 证明:注:比较法是证明不等式的一种最基本、最重要的方法。用

3、比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。讨论:若题设中去掉这一限制条件,要求证的结论如何变换?巩固练习:第81页练习1 , 2 , 3 , 4课后作业:第84页 1,2, 3学后反思:本节课学习了分析法和综合法的思考过程、特点. “变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。高二年级数学教学案课题 间接证明-反证法 第 002 课时教学案编制人 宋振苏班级 姓名 第 小组1、教学目标:知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。过程与方法: 多让学生举命题的例子,培养他们的辨析能

4、力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 2、教学重点:了解反证法的思考过程、特点3、 教学难点:反证法的思考过程、特点教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。 4、教学过程:学生探究过程:综合法与分析法(1)、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷

5、举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛

6、盾;与反设矛盾;自相矛盾。(2)、例子例1、求证:不是有理数例2、已知,求证:(且)例3、设,求证证明:例4、设二次函数,求证:中至少有一个不小于.证明:注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?例5、设0 a, b, c 1,nN),求证: ()评析:数学归纳法证明不等式时,经常用到“放缩”的技巧。变题:是否存在a、b、c使得等式12

7、2+232+n(n+1)2=(an2+bn+c) 对于一切正整数n都成立?证明你的结论。 解 假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有于是,对n=1,2,3下面等式成立122+232+n(n+1)2=记Sn=122+232+n(n+1)2(1)n=1时,等式以证,成立。(2)设n=k时上式成立,即Sk= (3k2+11k+10)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)=3(k+1)2+11(k+1)+10也就是说,等式对n=k+1也成立 综上所述,当a=3,b=11,c=10时,题设对一切自

8、然数n均成立 【课堂小结】体会常用的思维模式和证明方法。【反馈练习】1(2005辽宁)在R上定义运算若不等式对任意实数成立, 则ABCD2定义A*B,B*C,C*D,D*B分别对应下列图形那么下列图形中可以表示A*D,A*C的分别是 ( ) (1)(2)(3)(4)(1)(2)(3)(4)A(1)、(2) B(2)、(3) C(2)、(4) D(1)、(4)3 已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意nN,都能使m整除f(n),则最大的m的值为( )A 30B 26C 36D 6解析 f(1)=36,f(2)=108=336,f(3)=360=1036f(1),f(2),f

9、(3)能被36整除,猜想f(n)能被36整除 证明 n=1,2时,由上得证,设n=k(k2)时,f(k)=(2k+7)3k+9能被36整除,则n=k+1时,f(k+1)f(k)=(2k+9)3k+1(2k+7)3k=(6k+27)3k(2k+7)3k=(4k+20)3k=36(k+5)3k2(k2) f(k+1)能被36整除f(1)不能被大于36的数整除,所求最大的m值等于36 4 已知数列bn是等差数列,b1=1,b1+b2+b10=145 (1)求数列bn的通项公式bn;(2)设数列an的通项an=loga(1+)(其中a0且a1)记Sn是数列an的前n项和,试比较Sn与logabn+1的

10、大小,并证明你的结论 解 (1) 设数列bn的公差为d,由题意得,bn=3n2(2)证明 由bn=3n2知Sn=loga(1+1)+loga(1+)+loga(1+)=loga(1+1)(1+)(1+ )而logabn+1=loga,于是,比较Sn与logabn+1的大小比较(1+1)(1+)(1+)与的大小 取n=1,有(1+1)=取n=2,有(1+1)(1+推测 (1+1)(1+)(1+) (*)当n=1时,已验证(*)式成立 假设n=k(k1)时(*)式成立,即(1+1)(1+)(1+),则当n=k+1时, ,即当n=k+1时,(*)式成立由知,(*)式对任意正整数n都成立 于是,当a1

11、时,Snlogabn+1,当 0a1时,Snlogabn+1五、推理与证明编制人 宋振苏一、考点、要点、疑点:考点:1、理解合情推理与演绎推理; 2、了解分析法和综合法; 3、了解反证法。要点:1、合情推理(归纳和类比)在数学发现中的作用。2、演绎推理的基本模式(三段论)。3、证明的三种基本方法(分析法、综合法、反证法)各自的思考过程、特点。二、典型例题解析:例1、观察下列两等式的规律,请写出一个(包含下面两命题)一般性的命题: ; 例2、中,若,则的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体中,若两两垂直,则四面体的外接球半径_例3、已知表中的对数值有且只有两个是错误的x1

12、.53567891427lgx3a-b+c2a-ba+c1+a-b-c2(a+c)3(1-a-c)2(2a-b)1-a+2b3(2a-b)(1)假设上表中lg3=2a-b与lg5=a+c都是正确的,试判断lg6=1+a-b-c是否正确?给出判断过程;(2)试将两个错误的对数值均指出来并加以改正(不要求证明)三、课堂练习:1、观察下列两等式的规律,请写出一个(包含下面两命题)一般性的命题: ; 2、若三角形内切圆的半径为,三边长分别为,则三角形的面积。根据类比推理的方法,若一个四面体的内切球的半径为,四个面的面积分别为 ,则四面体的体积 。3、设,则 。4、已知数列,则是该数列的第 项。5、设数列是公比为的等比数列,是它的前项和。(1)求证:数列一定不是等比数列;(2)数列能是等差数列吗?请判断并说明理由。6、我们知道:圆的任意一条弦的中点和圆心的连线与该弦垂直。那么,若椭圆的一弦中点与原点连线及弦所在直线的斜率均存在,你能得到什么结论?请予以证明。参考解答例题解析:1、2、3、(1)正确 (2)课堂练习:1、2、 3、 4、128 5、(1)略 (2)时,是;时,不是6、椭圆的弦中点与原点的连线及弦所在直线的斜率都存在,那么它们的斜率的积为或.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1