ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.28MB ,
资源ID:337781      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-337781-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高中数学讲义微专题77 定点定直线问题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高中数学讲义微专题77 定点定直线问题 WORD版含解析.doc

1、微专题77 定点定直线问题一、基础知识:1、处理定点问题的思路:(1)确定题目中的核心变量(此处设为)(2)利用条件找到与过定点的曲线 的联系,得到有关与的等式(3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立。此时要将关于与的等式进行变形,直至易于找到。常见的变形方向如下: 若等式的形式为整式,则考虑将含的项归在一组,变形为“”的形式,从而只需要先让括号内的部分为零即可 若等式为含的分式, 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)2、一些技巧与

2、注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线)。然后再验证该点(或该直线)对一般情况是否符合。属于“先猜再证”。(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件。所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点。尤其在含参数的直线方程中,要能够找到定点,抓住关键条件。例如:直线,就应该能够意识到,进而直线绕定点旋转二、典型例题:例1:椭圆的离心率为,其左焦点到点的距离为(1)求椭圆的标准方程(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点。求证:直线过定点,并求出

3、该定点的坐标解:(1),设左焦点,解得 椭圆方程为(2)由(1)可知椭圆右顶点设,以为直径的圆过即 联立直线与椭圆方程: ,代入到或当时, 恒过当时, 恒过,但为椭圆右顶点,不符题意,故舍去恒过例2:已知椭圆经过点,且椭圆的离心率为(1)求椭圆的方程(2)过椭圆的右焦点作两条互相垂直的直线,分别交椭圆于和,设线段的中点分别为,求证:直线恒过一个定点解:(1) 代入可得: 椭圆方程为(2)由(1)可得:当直线斜率不存在时,所以可得: 为轴当斜率存在时,设,则设,联立方程可得: 同理,联立,可得:的方程为:,整理可得:时,直线方程对均成立直线恒过定点而斜率不存在时,直线也过直线过定点例3:如图,已

4、知椭圆的左右焦点为,其上顶点为,已知是边长为2的正三角形(1)求椭圆的方程(2)过点任作一动直线交椭圆于两点,记,若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线;若不在请说明理由解:(1)由椭圆方程可得为边长是2的三角形 (2)设设, 由可得:设,则由可得: 联立方程组,消去整理可得:代入到可得:在定直线上例4:已知椭圆的中心在坐标原点,左,右焦点分别为,为椭圆上的动点,的面积最大值为,以原点为中心,椭圆短半轴长为半径的圆与直线相切(1)求椭圆的方程(2)若直线过定点且与椭圆交于两点,点是椭圆的右顶点,直线分别与轴交于两点,试问以线段为直径的圆是否过轴

5、上的定点?若是,求出定点坐标;若不是,说明理由解:(1)因为圆与直线相切 椭圆方程为:(2)当直线的斜率存在时,设,由椭圆方程可得点设,联立方程可得:由,可得:,分别令,可得:,设轴上的定点为若为直径的圆是否过,则问题转化为恒成立即 由及可得:代入到可得:解得:圆过定点当直线斜率不存在时,直线方程为,可得为直径的圆过点所以以线段为直径的圆过轴上定点例5:如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点,当直线的斜率为时,(1)求椭圆的标准方程(2)试问以为直径的圆是否过定点(与的斜率无关)?请证明你的结论解:(1)由可得:

6、由对称性可知: 由可得椭圆方程为代入,可得:(2)设由对称性可知,由(1)可知设,联立直线与椭圆方程:,整理可得:解得:,代入可得: 从而,因为是直线与轴的交点 以为直径的圆的圆心为,半径圆方程为:,整理可得:所以令,解得以为直径的圆恒过例6:已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切,过点且不垂直轴的直线与椭圆相交于两点(1)求椭圆的方程(2)若点关于轴的对称点是,求证:直线与轴相交于定点解:(1) 已知圆方程为:因为与直线相切 椭圆的方程为:(2)设直线, 联立方程可得:,消去可得:考虑直线直线的方程为:令可得:,而,代入可得:,代入可得:与轴交于定点例7:在平面

7、直角坐标系中,已知椭圆与直线,四个点中有三个点在椭圆上,剩余一个点在直线上(1)求椭圆的方程(2)若动点在直线上,过作直线交椭圆于两点,使得,再过作直线,求证:直线恒过定点,并求出该定点的坐标解:(1)因为四个点中有三点在椭圆上,由椭圆的对称性可知:必在椭圆上若在椭圆上,则为椭圆的左顶点。但,所以与在椭圆上矛盾在椭圆上椭圆方程为(2)依题意可得,方程为:且共线为中点 在椭圆内部设,因为与椭圆交于为中点且于为的中垂线设为中点 当时 恒过当时,直线为轴,过无论位于哪个位置,直线恒过例8:已知圆,点,点在圆上运动,的垂直平分线交于点(1)求动点的轨迹的方程(2)过且斜率为的动直线交曲线于两点,在轴上

8、是否存在定点,使得以为直径的圆恒过这个点?若存在,求出的坐标;若不存在,说明理由解:(1)由图像可得:点的轨迹为以为焦点的椭圆 (2)设直线,与椭圆方程联立可得:消去可得:,整理后可得:设,因为以为直径的圆过点 代入到可得:所以只需: 可得所以存在定点例9:已知椭圆和圆,分别为椭圆的左顶点,下顶点和右焦点(1)点是曲线上位于第二象限的一点,若的面积为,求证:(2)点分别是椭圆和圆上位于轴右侧的动点,且直线的斜率是直线斜率的2倍,求证:直线恒过定点解:(1)由椭圆可得设,由在第二象限可得:的面积为 ,代入圆方程可得: (2)设直线的斜率为,则直线的斜率为 ,联立与椭圆方程:代入直线方程可得: 联立与圆方程:代入直线方程可得:的方程为:整理可得:直线恒过定点例10:已知椭圆的右焦点与抛物线的焦点重合,原点到过点的直线距离是(1)求椭圆的方程(2)设动直线与椭圆有且只有一个公共点,过作的垂线与直线交于点,求证:点在定直线上,并求出定直线的方程解:(1)抛物线的焦点坐标为 直线的方程为:椭圆方程为(2)因为直线与椭圆相切联立直线与椭圆方程:即切点坐标 即 的方程为联立方程: 解得在这条定直线上

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3