ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:364.50KB ,
资源ID:337611      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-337611-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(湖北省恩施巴东县第一高级中学高中数学(人教版)教案 必修三.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

湖北省恩施巴东县第一高级中学高中数学(人教版)教案 必修三.doc

1、第4课时 程序框图的画法(一)导入新课 思路1(情境导入) 一条河流有时像顺序结构,奔流到海不复回;有时像条件结构分分合合向前进;有时像循环结构,虽有反复但最后流入大海.一个程序框图就像一条河流包含三种逻辑结构,今天我们系统学习程序框图的画法. 思路2(直接导入) 前面我们学习了顺序结构、条件结构、循环结构,今天我们系统学习程序框图的画法.(二)推进新课、新知探究、提出问题(1)请大家回忆顺序结构,并用程序框图表示.(2)请大家回忆条件结构,并用程序框图表示.(3)请大家回忆循环结构,并用程序框图表示.(4)总结画程序框图的基本步骤.讨论结果:(1)顺序结构是由若干个依次执行的步骤组成的,这是

2、任何一个算法都离不开的基本结构.框图略.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.框图略.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.框图略.(4)从前面的学习可以看出,设计一个算法的程序框图通常要经过以下步骤: 第一步,用自然语言表达算法步骤. 第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框表示,得到该步骤的程序框图. 第三步,将所有步骤的程序框图用流程线连接

3、起来,并加上终端框,得到表示整个算法的程序框图.(三)应用示例例1 结合前面学过的算法步骤,利用三种基本逻辑结构画出程序框图,表示用“二分法”求方程x2-2=0(x0)的近似解的算法.算法分析:(1)算法步骤中的“第一步”“第二步”和“第三步”可以用顺序结构来表示(如下图):(2)算法步骤中的“第四步”可以用条件结构来表示(如下图).在这个条件结构中,“否”分支用“a=m”表示含零点的区间为m,b,并把这个区间仍记成a,b;“是”分支用“b=m ”表示含零点的区间为a,m,同样把这个区间仍记成a,b.(3)算法步骤中的“第五步”包含一个条件结构,这个条件结构与“第三步”“第四步”构成一个循环结

4、构,循环体由“第三步”和“第四步”组成,终止循环的条件是“|a-b|d或f(m)=0”.在“第五步”中,还包含由循环结构与“输出m”组成的顺序结构(如下图).(4)将各步骤的程序框图连接起来,并画出“开始”与“结束”两个终端框,就得到了表示整个算法的程序框图(如下图).点评:在用自然语言表述一个算法后,可以画出程序框图,用顺序结构、条件结构和循环结构来表示这个算法,这样表示的算法清楚、简练,便于阅读和交流.例2 相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么.发明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都

5、是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有64个格子),请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇怪,小小的“棋盘”,不足100个格子,如此计算怎么能放这么多麦子?试用程序框图表示此算法过程.解:将实际问题转化为数学模型,该问题就是要求1+2+4+263的和.程序框图如下:点评:对于开放式探究问题,我们可以建立数学模型(上面的题目可以与等比数列的定义、性质和公式联系起来)和过程模型来分析算法,通过设计算法以及语言的描述选择一些成熟的办法进行处理.例3 乘坐火车时,可以托运货物从甲地

6、到乙地,规定每张火车客票托运费计算方法是:行李质量不超过50 kg时按025元/kg;超过50 kg而不超过100 kg时,其超过部分按035元/kg;超过100 kg时,其超过部分按045元/kg编写程序,输入行李质量,计算出托运的费用分析:本题主要考查条件语句及其应用先解决数学问题,列出托运的费用关于行李质量的函数关系式设行李质量为x kg,应付运费为y元,则运费公式为:y=整理得y=要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现解:算法分析:第一步,输入行李质量x.第二步,当x50时,计算y=0.25x,否则,执行下一步.第三步,当x100,计算y=0.35x5,否则,计

7、算y=0.45x15.第四步,输出y程序框图如下:(四)知能训练 设计一个用有理数数幂逼近无理指数幂的算法,画出算法的程序框图.解:算法步骤:第一步,给定精确度d,令i=1.第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b.第三步,计算m=5b-5a.第四步,若md,则得到的近似值为5a;否则,将i的值增加1,返回第二步.第五步,得到的近似值为5a.程序框图如下:(五)拓展提升 求,画出程序框图分析:如果采用逐步计算的方法,利用顺序结构来实现,则非常麻烦,由于前后的运算需重复多次相同的运算,所以应采用循环结构,可用循环结构来实现其中的规律观察原式中的变化的部分及不变项,找出总体的规律是4+,要实现这个规律,需设初值x=4解:程序框图如下:(六)课堂小结(1)进一步熟悉三种逻辑结构的应用,理解算法与程序框图的关系.(2)根据算法步骤画出程序框图.(七)作业 习题1.1B组1、2.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1