ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:869KB ,
资源ID:33670      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-33670-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市长宁区2018-2019学年高一数学下学期期末考试试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

上海市长宁区2018-2019学年高一数学下学期期末考试试题(含解析).doc

1、上海市长宁区2018-2019学年高一数学下学期期末考试试题(含解析)一、填空题(本大题共10小题,每小题3分,共30分)1.函数的值域是_.【答案】【解析】【分析】根据反正弦函数定义得结果【详解】由反正弦函数定义得函数的值域是【点睛】本题考查反正弦函数定义,考查基本分析求解能力,属基础题2.在等差数列中,当最大时,的值是_.【答案】6或7【解析】分析】利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【详解】设等差数列的公差为,所以,因为,所以当或时,有最大值,因此当的值是6或7.【点睛】本题考查了等差数列前项和公式,考查了等差数列的前项和最大值问题

2、,运用二次函数的性质是解题的关键.3.若,则_.【答案】,【解析】【分析】根据特殊角的三角函数值求解三角方程【详解】因为【点睛】本题考查解简单三角方程,考查基本分析求解能力,属基础题4.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为_.【答案】1【解析】【分析】根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题5.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为_万元(精确到万元).【答案】464【解析】【分析】根据等比

3、数列求和公式求解【详解】由题意得从2019年到2022年各年产值构成以100 为首项,1.1为公比的等比数列,其和为【点睛】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题6.设数列是等差数列,则此数列前20项和等于_.【答案】180【解析】【分析】根据条件解得公差与首项,再代入等差数列求和公式得结果【详解】因为,所以,【点睛】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题7.在中,角,所对的边分别为,若,则角最大值为_.【答案】【解析】【分析】根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不

4、等式求最值,考查基本分析求解能力,属中档题8.(理)已知函数,若对恒成立,则的取值范围为 【答案】【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.9.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是_【答案】100【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,所以,当且仅当时等号成立,因此的最大值为100点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式

5、求得最值本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解10.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_ 【答案】【解析】试题分析:根据正余弦函数定义,令,则可以得出,即.可以得出,解得,.那么,所以故本题正确答案为.考点:三角函数的概念.二、选择题(本大题共4小题,每小题3分,共12分.在毎小题给出的四个选项中,只有一项是符合题目要求的)11.“”是“”成立的()A. 充分非必要条件.B. 必要非充分条件.C. 充要条件.D. 既非充分又非必要条件.【答案】A【解析】【分析】依次分

6、析充分性与必要性是否成立.【详解】时,而时不一定成立,所以“”是“”成立的充分非必要条件,选A.【点睛】本题考查充要关系判定,考查基本分析判断能力,属基础题12.公比为2的等比数列的各项都是正数,且,则()A. 8B. 2C. 4D. 1【答案】D【解析】【分析】根据条件解得首项,再求【详解】因为,所以,选D.【点睛】本题考查等比数列通项公式中基本量,考查基本分析求解能力,属基础题13.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B. C. D. 【答案】C【解析】【分析】比较与时不等式左边的项,即可得到结果【详解】因此不等式左边为,选C.【点睛】本题考查数学归纳法,考查基

7、本分析判断能力,属基础题14.如图,函数的图像是()A. B. C. D. 【答案】C【解析】【分析】取特殊值,即可进行比较判断选择【详解】因为,所以舍去D; 因为,所以舍去A; 因为,所以舍去B;选C.【点睛】本题考查图象识别,考查基本分析判断能力,属基础题三、解答题(本大题共6个题,满分58分.解答应写出文字说明、证明过程或演算步骤)15.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)【答案】【解析】【分析】过作的垂线,垂足为,再利用直角三角形与正弦定理求解【详解】解:设人的位置为,塔底为,塔顶为,过作的垂线,垂足为,则,所以,答:电视塔的高为

8、约.【点睛】本题考查利用正弦定理测量高度,考查基本分析求解能力,属基础题16.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.【答案】(1)(2)只有一项【解析】【分析】(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【点睛】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题17.已知函数(其中,)的最小正周期为.(1)求的值;(2)如果,且,求的值.【答案】(1)(2)【解析】分析】(1)先根据二倍角余弦公式化简,再根据余弦

9、函数性质求解(2)先求得,再根据两角差余弦公式求解【详解】解:(1)因为.所以,因为,所以.(2)由(1)可知,所以,因为,所以,所以.因为.所以.【点睛】本题考查二倍角余弦公式、两角差余弦公式以及余弦函数性质,考查基本分析求解能力,属基础题18.已知数列满足关系式,.(1)用表示,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.【答案】(1),(2)猜想:,证明见解析【解析】【分析】(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,即时结论成立.综上,对时结论成立.【

10、点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题19.在锐角中,角所对的边分别为,已知,(1)求角的大小;(2)求的面积【答案】(1);(2)【解析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式20.已知数列前项

11、和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.【答案】(1)(2)(3)见解析【解析】【分析】(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【详解】(1),所以,由得时,两式相减得,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3),其中,所以,当时,式两边同时乘以得,式减去得,所以,因为,所以数列是以为首项,公差为的等差数列.【点睛】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3