ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:363.50KB ,
资源ID:336175      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-336175-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高中数学 微专题94 极坐标与参数方程练习(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高中数学 微专题94 极坐标与参数方程练习(含解析).doc

1、微专题94 极坐标与参数方程 极坐标与参数方程在高考中常以填空或选择的形式出现,在知识上结合解析几何,考查学生曲线方程的转化能力,以及解析几何的初步技能。题目难度不大,但需要学生能够快速熟练的解决问题一、基础知识:(一)极坐标:1、极坐标系的建立:以平面上一点为中心(作为极点),由此点引出一条射线,称为极轴,这样就建立了一个极坐标系2、点坐标的刻画:用一组有序实数对确定平面上点的位置,其中代表该点到极点的距离,而表示极轴绕极点逆时针旋转至过该点时转过的角度,通常: 3、直角坐标系与极坐标系坐标的互化:如果将极坐标系的原点与直角坐标系的原点重合,极轴与轴重合,则同一个点可具备极坐标和直角坐标,那

2、么两种坐标间的转化公式为:,由点组成的直角坐标方程与极坐标方程也可按照此法则进行转化,例如:极坐标方程(在转化成时要设法构造 ,然后进行整体代换即可)(二)参数方程:1、如果曲线中的变量均可以写成关于参数的函数,那么就称为该曲线的参数方程,其中称为参数2、参数方程与一般方程的转化:消参法(1)代入消参: (2)整体消参:,由可得: (3)平方消参:利用消去参数例如: 3、常见图形的参数方程:(1)圆:的参数方程为:,其中为参数,其几何含义为该圆的圆心角(2)椭圆:的参数方程为,其中为参数,其几何含义为椭圆的离心角(3)双曲线:的参数方程为,其中为参数,其几何含义为双曲线的离心角(4)抛物线:的

3、参数方程为,其中为参数(5)直线:过,倾斜角为的直线参数方程为,其中代表该点与的距离注:对于极坐标与参数方程等问题,通常的处理手段是将方程均转化为直角坐标系下的一般方程,然后利用传统的解析几何知识求解二、典型例题:例1:已知直线参数方程为,圆的参数方程为,则圆心到直线的距离为_思路:将参数方程转化为一般方程: 所以圆心为,到直线的距离为: 答案: 例2:以直角坐标系的原点为极点,轴非负半轴为极轴,建立极坐标系,在两种坐标系中取相同的单位长度,点的极坐标为,曲线的参数方程为,则曲线上的点到点距离的最大值为_思路:,故曲线上距离最远的距离为到圆心的距离加上半径,故 答案: 例3:已知在平面直角坐标

4、系中圆的参数方程为:,以为极轴建立极坐标系,直线极坐标方程为,则圆截直线所得弦长为_思路:圆的方程为:,对于直线方程,无法直接替换为,需构造再进行转换: 再求出弦长即可: 答案: 例4:已知两曲线参数方程分别为和,它们的交点坐标为_思路:曲线方程为,联立方程可解得:或(舍)由可得: 所以,坐标为 答案:例5:在极坐标系中,直线与曲线相交于两点,且,则实数的值为_思路:先将直线与曲线转化为直角坐标方程:,曲线,所以问题转化为直线与圆相交于,且,利用圆与直线关系可求得圆心到直线距离即,解得或 答案:或例6:以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的极坐

5、标方程为,它与曲线(为参数)相交于两点,则_思路:先将两个方程转化为直角坐标系下的普通方程。对于,这种特殊的极坐标方程可以考虑数形结合来确定直线:即,曲线消参后可得:即圆心是,半径为的圆,所以, 答案: 小炼有话说:对于形如的极坐标方程,可以作出图像并根据图像得到直角坐标方程,或者可以考虑对赋予三角函数,然后向直角坐标进行转化: 例7:在直角坐标系中,曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,则两曲线交点间的距离是_思路:将转变为直角坐标系的普通方程。,则为直线与双曲线位置关系,联立方程,利用韦达定理求得弦长即可解: 的方程为 联立方程可得: 代入消去

6、可得: 设交点 则 答案: 例8:已知曲线的极坐标方程分别为,其中,则曲线交点的极坐标为_思路一:按照传统思路,将转变为直角坐标系的普通方程,求出交点坐标后再转换为极坐标解:或将两个点转化为极坐标分别为,因为,所以只有符合条件思路二:观察到所给方程形式简单,且所求也为极坐标,所以考虑直接进行极坐标方程联立求解解:代入消去可得: 交点坐标为 小炼有话说:(1)思路一中规中矩,但解题过程中要注意原极坐标方程对的限制条件(2)思路二有些学生会对联立方程不很适应,要了解到极坐标中的本身是实数,所以关于它们的方程与方程一样,都是实数方程,所以可以用实数方程的方法去解根,只是由于其具备几何含义(尤其)导致

7、方程形式有些特殊(数与三角函数)。但在本题中,通过代入消元还是容易解出的例9:已知在极坐标系中,为极点,圆的极坐标方程为,点的极坐标为,则的面积为_思路一:将转变为直角坐标系方程:,所以,再求出的直角坐标为,则,因为,所以,且,所以思路二:本题求出后,发现其极坐标为,而,所以可结合图像利用极坐标的几何含义求解,可得,所以 答案:小炼有话说:(1)在思路一中面积的求法用向量求解还可以更为简单:,所以,代入即可(2)思路二体现了极坐标本身具备几何特点,即长度()与角,在解决一些与几何相关的问题时,灵活运用极坐标的几何含义往往能达到出奇制胜的效果例10:在直角坐标系中,曲线的参数方程为,(其中为参数

8、),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,设点,曲线交于,求的值思路一:将转化为直角坐标系下普通方程: ,联立方程,解出坐标,再求出即可解: 设 , 思路二:本题在思路一的基础上通过作图可发现三点共线,则可以考虑将转变为向量的数量积,即,进而向量坐标化后整体代入即可解:(前面转化方程,联立方程同思路一)设, 由得 思路三:观察到恰好是直线参数方程的定点,且所求恰好是到的距离,所以联系到直线参数方程中参数的几何含义。只需求得对应参数的乘积即可解:设,则有,则有代入到中可得:所以是方程的两根,整理可得: 答案: 小炼有话说:(1)思路二体现了处理线段模长乘积时,可观察涉

9、及线段是否具备共线特点,如果具备可以将其转化为向量的数量积,从而简化运算,但要注意与图像结合,看好向量是同向还是反向(2)思路三体现了对直线参数方程中参数几何含义的巧用。在处理两条曲线(其中一条为参数方程)的交点问题时,可以将参数代换掉另一曲线中的得到关于参数的方程。另外在使用直线参数方程时,要注意参数前面的系数应该是该直线倾斜角的正余弦值。否则参数不具备几何含义。例如本题中如果参数方程为,则并不代表点到的距离。三、历年好题精选1、已知直角坐标系中,直线的参数方程为(为参数),以直角坐标系中的原点为极点,轴的非负半轴为极轴,圆的极坐标方程为,则圆心到直线的距离为_2、(2015,北京)在极坐标

10、系中,点到直线的距离为_3、(2015,广东)已知直线的极坐标方程为,点的极坐标为,则点 到直线的距离为_4、(2015,新课标II)在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线 (1)求交点的直角坐标(2)若相交于点,相交于点,求的最大值5、(2015,陕西)在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为 (1)写出的直角坐标方程(2)为直线上一动点,当到圆心的距离最小时,求的直角坐标习题答案:1、答案:解析:可知直线的方程为:,圆的直角坐标方程为,所以圆心到直线的距离为 2、答案:1解析:点化为直角坐标系坐标为,直线方程为,从而该点到直线的距离为 3、答案: 解析:直线,转化为直角坐标方程为,点的直角坐标为,则到直线的距离为 4、解析:(1)曲线的直角坐标方程分别为: 联立方程:解得:或 交点的直角坐标为 (2)曲线的极坐标方程为 在极坐标系下 ,当时取到5、解析:(1)直角坐标方程为整理可得: (2)设,由(1)可得 等号成立条件为,此时 6、答案: 解析:圆的直角坐标方程为:,设直线方程为:,因为,可知,所以为直径,即过圆心,计算可得:,直线方程为,再转化为极坐标方程为

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3