1、八年级数学上册第十一章实数和二次根式章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把根号外的因式适当变形后移到根号内,得()ABCD2、下列说法错误的是()A中的可以是正数、负数、零B中的不可能
2、是负数C数的平方根一定有两个,它们互为相反数D数的立方根只有一个3、下列说法正确的有()无限小数不一定是无理数;无理数一定是无限小数;带根号的数不一定是无理数;不带根号的数一定是有理数ABCD4、有下列说法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数都是无理数;无理数是含有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个5、下列二次根式是最简二次根式的是( )ABCD6、实数a在数轴上的位置如图所示,则+化简后为()A7B7C2a15D无法确定7、下列实数中,为有理数的是()ABC1D8、如图,数轴上的点A,B,O,C,D分别表示数-
3、2,-1,0,1,2,则表示数的点P应落在A线段AB上B线段BO上C线段OC上D线段CD上9、下列各数中,比3大比4小的无理数是()A3.14BCD10、已知:a=,b=,则a与b的关系是()A相等B互为相反数C互为倒数D平方相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若将三个数,表示在数轴上,则被如图所示的墨迹覆盖的数是_.2、的算术平方根是_,的倒数是_3、若x满足|2017-x|+ =x, 则x-20172=_4、数学家发明了一个魔术盒,当任意 “数对 ” 进入其中时,会得到一个新的数:,例如把放入其中,就会得到,现将 “数对”放入其中后,得到的数是_5、
4、如果=4,那么(a-67)3的值是_三、解答题(5小题,每小题10分,共计50分)1、根据已学知识,我们已经能比较有理数的大小,下面介绍一种新的比较大小的方法:3210,32;(2)130,21;(2)(2)0,22像上面这样,根据两数之差是正数、负数或0,判断两数大小关系的方法叫做作差法比较大小(1)请将上述比较大小的方法用字母表示出来:若,则_;若,则_;若,则_;(2)请用上述方法比较下列代数式的大小(直接在空格中填写答案)_;当时,_;(3)试比较与的大小,并说明理由2、有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板(1)求剩余木料的面
5、积(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出 块这样的木条3、计算:4、如果一个正数m的两个平方根分别是2a3和a9,求2m2的值5、计算题(1);(2);(3)-参考答案-一、单选题1、C【解析】【分析】根据已知得出m0,再根据二次根式的性质把被开方数中的分母开出来即可【详解】解:0,0,故选:C【考点】本题考查了二次根式的性质的应用,熟练掌握二次根式的性质是解决本题的关键2、C【解析】【分析】按照平方根和立方根的性质判断即可【详解】A. 中的可以是正数、负数、零,正确,不符合题意;B. 中的不可能是负数,正确,不符合题意;C. 0的平方根只有0,故
6、原说法错误,符合题意;D. 数的立方根只有一个,正确,不符合题意;故选:C【考点】本题考查了平方根和立方根的性质,解题关键是掌握平方根和立方根的性质3、A【解析】【分析】根据无理数是无限不循环小数进行判断即可【详解】解:无限小数不一定都是无理数,如是有理数,故正确;无理数一定是无限小数,故正确;带根号的数不一定都是无理数,如是有理数,故正确;不带根号的数不一定是有理数,如是无理数,故错误;故选:A【考点】本题考查的是实数的概念,掌握实数的分类、正确区分有理数和无理数是解题的关键,注意无理数是无限不循环小数4、A【解析】【分析】根据无理数、分数的概念判断【详解】解:无限不循环小数是无理数,错误是
7、有理数,错误是有理数,错误也是无理数,不含根号,错误是一个无理数,不是分数,错误故选:【考点】本题考查实数的概念,掌握无理数是无限不循环小数是求解本题的关键5、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、被开方数含分母,故A不符合题意; B、被开方数,含分母,故B不符合题意; C、被开方数含能开得尽方的因数或因式,故C不符合题意; D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式6、
8、A【解析】【详解】根据二次根式的性质可得:+,因为,所以原式=,故选A.7、C【解析】【分析】根据有理数是有限小数或无限循环小数可判断C,无理数是无限不循环小数,可判断A、B、D即可【详解】解:,是无理数,1是有理数故选C【考点】本题考查了实数,正确区分有理数与无理数是解题的关键8、B【解析】【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案【详解】由被开方数越大算术平方根越大,得23,由不等式的性质得:-12-0.故选B.【考点】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.9、C【解析】【分析】根据无理数的定义找出无理数,再估算无理数的
9、范围即可求解【详解】解:四个选项中是无理数的只有和,而1742,3212424,34选项中比3大比4小的无理数只有故选:C【考点】此题主要考查了无理数的定义和估算,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数10、C【解析】【详解】因为,故选C.二、填空题1、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可【详解】因为,所以,所以,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为.【考点】此题考查估算无理数的大小,实数与数轴,解题关键在于估算出取值范围.2、 3 【解析】【分析】先计算的值,再根据算
10、术平方根得定义求解;根据倒数的定义求解即可【详解】解:,9的算术平方根是3,的算术平方根是3;的倒数是;故答案是:3,【考点】本题考查了算术平方根和倒数的应用,主要考查学生的理解能力和计算能力3、2018【解析】【分析】根据二次根式有意义的条件列出不等式,求解得出x的取值范围,再根据绝对值的意义化简即可得出方程 =2017,将方程的两边同时平方即可解决问题【详解】解:由条件知,x-20180, 所以x2018,|2017-x|=x-2017. 所以x-2017+ =x,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018【考点】本题主要考查了二次根式
11、的内容,根据二次根式有意义的条件找到x的取值范围是解题的关键4、12【解析】【分析】根据题中“数对”的新定义,求出所求即可【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12【考点】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键5、343【解析】【分析】利用立方根的定义及已知等式求出a的值,代入所求式子计算即可求出值【详解】,a+4=43,即a+4=64,a=60,则(a-67)3=(60-67)3=(-7)3=-343,故答案为-343.【考点】本题考查了立方根,熟练掌握立方根的定义是解本题的关键三、解答题1、 (1),=,(2),(3),理由见详
12、解【解析】【分析】(1)根据作差法可作答;(2)利用作差法即可作答;(3)结合整式的加减混合运算法则,利用作差法即可作答;(1),;,;,故答案为:、=、;(2),;,又,故答案为:、;(3),理由如下:,又,【考点】本题考查了实数比较大小、二次根式的加减混合运算、整式的加减混合运算等知识,掌握相关的加减混合运算法则是解答本题的关键2、(1)剩余木料的面积为6dm2;(2)2【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算 和 的大小,结合题意解答即可.【详解】解:(1)两个正方形的面积分别为18dm2和32dm2,这两个正方形的边长分别为3dm和4dm,剩余木料
13、的面积为(43)36(dm2);(2)434.5,12,从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2【考点】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.3、【解析】【分析】分别根据绝对值的代数意义、二次根式的乘法、分母有理化以及负整数指数幂的运算法则对各项进行化简,然后再进行加减运算即可【详解】解:=【考点】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键4、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根和平方的关系求出m,再求出2m-2的值【详解】解:一个正数的两个平方根分别是2a3和a9,(2a3)+(a9)=0,解得a= 4,这个正数为(2a3) 2=52=25,2m2=2252= 48;故答案为48.【考点】本题考查平方根.5、 (1)(2)(3)【解析】【分析】(1)根据二次根式的运算可进行求解;(2)化简二次根式,然后再进行求解;(3)根据立方根及实数的运算可进行求解(1)解:原式=;(2)解:原式=;(3)解:原式=【考点】本题主要考查二次根式的运算及立方根,熟练掌握二次根式的运算及立方根是解题的关键