ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:127.50KB ,
资源ID:334724      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-334724-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高考数学一轮复习 第9章 解析几何 第8节 曲线与方程课时跟踪检测(理含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高考数学一轮复习 第9章 解析几何 第8节 曲线与方程课时跟踪检测(理含解析).doc

1、第九章解析几何第八节曲线与方程A级基础过关|固根基|1.到点F(0,4)的距离比到直线y5的距离小1的动点M的轨迹方程为()Ay16x2By16x2Cx216yDx216y解析:选C由条件知,动点M到F(0,4)的距离与到直线y4的距离相等,所以点M的轨迹是以F(0,4)为焦点,直线y4为准线的抛物线,其标准方程为x216y.2已知点M(3,0),N(3,0),B(1,0),动圆C与直线MN切于点B,过M,N与圆C相切的两直线(非x轴)相交于点P,则点P的轨迹方程为()Ax21(x1)Bx21(x0)Dx21(x1)解析:选A由题意知,|PM|PN|BM|BN|2,由双曲线的定义可知点P的轨迹

2、是以M,N为焦点的双曲线的右支,由已知条件得c3,a1,所以b28.所以点P的轨迹方程为x21(x1)故选A3已知点Q在椭圆C:1上,点P满足()(其中O为坐标原点,F1为椭圆C的左焦点),则点P的轨迹为()A圆B抛物线C双曲线D椭圆解析:选D因为点P满足(),所以点P是线段QF1的中点,设P(x,y),由于F1为椭圆C:1的左焦点,则F1(,0),故Q(2x,2y),由点Q在椭圆C:1上,得点P的轨迹方程为1,故点P的轨迹为椭圆,故选D4已知A(0,7),B(0,7),C(12,2),以C为一个焦点作过A,B的椭圆,椭圆的另一个焦点F的轨迹方程是()Ay21(y1)By21Cy21Dx21解

3、析:选A由题意,得|AC|13,|BC|15,|AB|14,又|AF|AC|BF|BC|,|AF|BF|BC|AC|2,故点F的轨迹是以A,B为焦点,实轴长为2的双曲线的下支由已知条件得c7,a1,b248,点F的轨迹方程为y21(y1)故选A5(2019届湖南雅礼中学月考)已知A(1,0),B是圆F:x22xy2110(F为圆心)上一动点,线段AB的垂直平分线交线段BF于点P,则动点P的轨迹方程为()A1B1C1D1解析:选D圆F的标准方程为(x1)2y212,则圆心F(1,0),半径r2.由已知可得|FB|PF|PB|PF|PA|22|AF|,故动点P的轨迹是以A,F为焦点的椭圆,所以a,

4、c1,所以b2a2c22,所以动点P的轨迹方程是1.故选D6已知在ABC中,A,B,C的对边分别为a,b,c,且顶点A,B的坐标分别为(4,0),(4,0),C为动点,且满足sin Bsin Asin C,则C点的轨迹方程为_解析:由sin Bsin Asin C及正弦定理可知bac10,即|AC|BC|108|AB|,满足椭圆定义令椭圆方程为1,则a5,c4,b3,则C点轨迹方程为1(x5)答案:1(x5)7在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足向量在向量上的投影为,则点P的轨迹方程是_解析:由题意知,得x2y5,即x2y50.答案:x2y508在平面直角坐标系x

5、Oy中,O为坐标原点,A(1,0),B(2,2),若点C满足t(),其中tR,则点C的轨迹方程是_解析:设C(x,y),则(x,y),t()(1t,2t),所以消去参数t得点C的轨迹方程为y2x2.答案:y2x29已知圆的方程为x2y24,若抛物线过点A(1,0),B(1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是_解析:设抛物线焦点为F,过A,B,O作准线的垂线AA1,BB1,OO1,则|AA1|BB1|2|OO1|4,由抛物线定义得|AA1|BB1|FA|FB|,所以|FA|FB|4,故F点的轨迹是以A,B为焦点,长轴长为4的椭圆(去掉长轴两端点)所以抛物线焦点的轨迹方程为1(y0)

6、答案:1(y0)10(2020届惠州调研)已知定点A(3,0),B(3,0),直线AM,BM相交于点M,且它们的斜率之积为,记动点M的轨迹为曲线C(1)求曲线C的方程;(2)过点T(1,0)的直线l与曲线C交于P,Q两点,是否存在定点S(x0,0),使得直线SP与SQ斜率之积为定值?若存在,求出S的坐标;若不存在,请说明理由解:(1)设动点M(x,y),则直线MA的斜率kMA(x3),直线MB的斜率kMB(x3)因为kMAkMB,所以,化简得y21.又x3,所以曲线C的方程为y21(x3)(2)存在定点S(x0,0),使得直线SP与SQ斜率之积为定值由题意得直线l的斜率不为0,根据直线l过点T

7、(1,0),可设直线l的方程为xmy1,联立得消去x得,(m29)y22my80.设P(x1,y1),Q(x2,y2),则直线SP与SQ的斜率分别为kSP,kSQ,则kSPkSQ,当x03时,mR,kSPkSQ;当x03时,mR,kSPkSQ.所以存在定点S(3,0),使得直线SP与SQ斜率之积为定值.B级素养提升|练能力|11.如图所示,在平面直角坐标系xOy中,A(1,0),B(1,1),C(0,1),映射f将xOy平面上的点P(x,y)对应到另一个平面直角坐标系uOv上的点P(2xy,x2y2),则当点P沿着折线ABC运动时,在映射f的作用下,动点P的轨迹是()解析:选D当P沿AB运动时

8、,x1,设P(x,y),则(0y1),故y1(0x2,0y1);当P沿BC运动时,y1,则(0x1),所以y1(0x2,1y0),由此可知P的轨迹如D所示,故选D12已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若2,其中为常数,则动点M的轨迹不可能是()A圆B椭圆C抛物线D双曲线解析:选C以AB所在直线为x轴,AB的中垂线为y轴,建立坐标系(图略),设M(x,y),A(a,0),B(a,0),则N(x,0)因为2,所以y2(xa)(ax),即x2y2a2,当1时,轨迹是圆;当0且1时,轨迹是椭圆;当0)由得x.设u,则P(u,uk),Q(u,uk),E(u,0)于是直线QG的斜率为,方程为y(xu)由得(2k2)x22uk2xk2u280.设G(xG,yG),则u和xG是方程的解,故xG,由此得yG.从而直线PG的斜率为.所以PQPG,则PQG是直角三角形

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3